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Abstract. We define the semibandwidth of a bipartite graph (whose bipartition is spec-
ified), which is a bipartite analogue of the bandwidth of a graph, and develop some of
its properties. The motivation for this concept comes from the question of transforming
a matrix by row and column permutations to as close to triangular form as possible.

1. Introduction.

Let X = {z1,...,Tm}andY = {y1,... ,Un} be disjoint sets with m and n
elements respectively, and let G = (X,Y’; E) be an ('m, n) -bipartite graph with
vertex set V = X UY andedgeset E C {{zi,5;}:1<i<m,1<j<n} A
bipartite numbering of G is a pair (o, T) where

o:X —»{1,...,m} and 7Y —{1,...,n}

are bijections. The semibandwidths of the bipartite numbering (o, 7) of G are
defined by

sbx(G;0,7) = max{r(y) —o(z):z € X, y €Y, {z,y} € E}
sby(Gi0,7) = max{a(z) —7(y):z € X, y €Y, {z,y} € E}.

We observe that —m < sbx(G;0,7) < n—1(fE = ¢, wedefine sbx(G;0,7) =
—m),and —n < sby(G; 0,7 <m—1. The semibandwidths of G are the num-
bers

sbx (@) = min sbx(G; 0,7)

and
sby(G) = min sby (G, 0, 7)

where the minima are taken over all bipartite numberings (o, 7) of G. A bipar-
tite graph, if not connected, does not have a unique bipartition. The semiband-
widths depend on the choice of bipartition. Throughout, a bipartite graph always
refers to a bipartite graph with a specified bipartition. The semibandwidths of a
bipartite graph are bipartite analoques of the bandwidth of a graph [1, 2]. A bi-
partite numbering (o, 7) for which sbx(G;0,7) = sbx (@) is said to realize the
semibandwidth sbx(G).
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It follows from the definition of semibandwidth that
sbx(G) = sby(G) = n—m. (1.1)

Because of (1.1) we will confine our attention to the semibandwidth sb x(G) in
the case that m < n. Suppose m < mand let Z be a set disjoint from X UY
with |Z| = n— m. If G’ is the bipartite graph (X U Z2,Y;E), then sbx(G) =
sbxuz(G') + (n— m). Thus in general discussion of the semibandwidth we may
also assume that m = n.

Let A = [ay;] be the m by n reduced adjacency matrix of G = (X,Y; E)
determined by the orderings z,... ,z,, and y;,... , Yn Of the vertices in X and
Y. This matrix A is defined by: a;; = 1 if and only if {zi,y;} is an edge of
GG =1,...,m; j=1,...,n). Let P and Q be the permutation matrices
corresponding to the bijections o and T of the bipartite numbering (o, 7). Let k
be an integer with —m < k < (n— 1). The kth diagonal of A is the set of
positions (4,7) with j — i = k. Then sbx(G;0,7) < k if and only if there are
permutation matrices P and Q such that all the nonzero entries of PAQ occuron
or below its kth diagonal, that is P AQ has the form

k41
[* \0] . (12)

Hence sbx(G) < 1 if and only if the rows and columns of A can be permuted to
achieve a lower triangular matrix. The semibandwidth is one measurement of the
closeness of A to a triangular matrix. If —(m — 1) < k< 0,then (1.2) is to be

interpreted as
—k{ 0
N : (1.3)

In the next section we discuss some of the elementary properties of semiband-
width. In Section 3 we show how to determine the semibandwidth of a bipartite
graph which is the pairwise disjoint union of complete bipartite graphs. In the
final section we introduce a measure of how close a bipartite graph is to having
semibandwidth at most equal to an integer k. In the case of a direct sum of two
complete bipartite graphs, we show how to attain this measure.

We conclude this introduction by formulating the problem of the determination
of the semibandwidth sbx (G) as an embedding problem. Let H = (X,Y; F) be
a bipartite graph. Let

1ifj>1 . .
eU:{—l ifj<i (t=1,...,m; j=1,...,n).
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Let d;; be the distance in H between z; and y;. We define the signed distance
between z; and y; to be the number &;; d;;. Now let k be an arbitrary integer.
We define the kth bipartite power of H with respect to X to be the bipartite
graph H (") = (X,Y;F') in which {z;,y;} € F' if and only if g;;d;; < 2k — 1
(1'=1,...,m, j=1,...,m.

Let P,, be the path drawn in Figure 1.

® O - Py

Y1 I Y2 T2 In-1 Yn Iy

Figure 1

The powers P3("3) are drawn in Figure 2.
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3. P§3 =Ky 5 (22)
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Figure 2

1t follows that for an ( n, n) -bipartite graph G the semibandwidth sbx (G) equals
the smallest integer k with —n < k < n— 1 such that there is an embedding of

G into the graph P{¥).
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2. Semibandwidth.

Our discussions are usually formulated in terms of m by n (0, 1)-matrices A.
We let s'(A) be the smallest integer k such that A has the form (1.2) (or (1.3)),
and we call

s(A) = min{s'(PAQ): P,Q permutation matrices}

the semibandwidth of A. If P, are permutation matrices for which s(A) =
§'(PAQ), then PAQ is said to realize the semibandwidth of A. We have —m <
s(A) < n—1andby(1.1) s(A) —s(AT) = n— m. We remark thatif s(A) > 0,
then n — s(A) is the largest order of a square submatrix of A whose rows and
columns can be permuted to give a triangular matrix. If s(A) < 0, then we may
delete m + s(A) zero rows of A and n+ s(A) zero columns and obtain a matrix
whose rows and columns can be permuted to give a triangular matrix.

Unlike the bandwidth of a graph the semibandwidth of a bipartite graph does
not in general equal the maximum of the semibandwidths of its connected com-
ponents. For example, let

1 0 0 11
A1= 1 0 0 f A2=[1 1]‘
1 1 1

Then s(A;1) = 0 and s(Az) = 1; however s(A; @ A2) = 0 because we may
permute the rows and columns of A; @ A, and obtain

—_0 O
S = -0
O = - OO
-0 O o0
- OO0 0O

Let p and ¢ be the minimum row sum and maximum column sum of the m by
n(0, 1)-matrix A. It follows from definition that s(A) > max {p—1,g—m}.

We now determine the semibandwidth of trees. Because a tree T is a connected
bipartite graph there is a unique bipartition of its vertices into sets X and Y such
that each edge of T is of the form {z, y} for some z in X andy in Y.

Theorem 2.1. Suppose that the m byn (0, 1) -matrix A is the reduced adjacency
matrix of a treeT. Then

s(A) = n— min{m,n}. @.1)

Proof: LetT = (X,Y;E). If m = 1 orn = 1 then (2.1) clearly holds. We
now assume that m,n > 2 and proceed by induction on m + n. Without loss of
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generality we assume that m > n. We then need to show that s(A) = 0. Because
m > m, the set X contains a pendant vertex of T. We may permute the rows and

columns of A and obtain
1 0 ... O

*

: A

*
where A’ is the reduced adjacency matrix of a forest F' with the trees Ty,..., Ty
as connected components. Let A; be the m; by n; reduced adjacency matrix of
T:(i=1,...,7r). We note that n; may be 0 but this causes no difficulties in the
argument that follows. By the inductive assumption s( 4;) = n; — min{m;, n}.
Let d; = m; — m; where we may assume that d; > ... > d,. We observe that
dy + ...+ dr = m — n> 0. There exist permutation matrices P and Q such that

1] 0 - 0
_ |*] B, 0
PAQ = 1 o .
* B,
2.2)
where B; is an m; by n; matrix of one of the forms
* . 0 N 0
% (MsZﬂi), * KR (mt.<_nl) (2.3)
*
*
Forj=1,...,r—1 wehave
0gm—n=d1+...+d,_<_d1+...+d,~+(r—j)d,~+1. 24)

Ifd; + ...+ d; < 0,thend; < 0 and hence dj.; < 0, and we contradict (2.4).
Hence

di+...+d; >0 (j=1,...,m. (2.5)
It follows from (2.5) that both the (1, 1)-entry and the (m;;, n;)-entry of B; are
on or below the main diagonal of the matrix in (2.2) (i = 1,... 7). fm; >

n; (respectively, m; < m;), we use the fact that the (1, 1) -entry (respectively,
(m;, n;) -entry) of B; is on or below the main diagonal of (2.2) to conclude that
the matrix in (2.2) has only 0’s above its main diagonal. Hence s(A) < 0. But
clearly s(A) > 0, and the induction is complete. 1
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Corollary 2.2. Suppose thatthem byn (0, 1) -matrix A is the reduced adjacency
matrix of a forest. Then

3(A) < n—min{m,n}.

We now consider the semibandwidth of a regular bipartite graph of degree k.
Such graphs have a square reduced adjacency matrix A with exactly k 1’s in every
row and column. If k = 1, then clearly s(A) = 0. Now suppose that k = 2.
Then there are permutation matrices P and Q such that PAQ is the direct sum of
matrices of the form

11
1 1 0
0 e

1 1

and it follows that s(A) = 1.

We now show that for k > 3, there exist matrices with exactly k£ 1’s in each
row and column having arbitrarily large semibandwidth. We recall that the girth
g of a graph G equals the smallest length of a cycle of G. We first show that the
girth of a regular bipartite graph determines a lower bound for the semibandwidth.

Lemma 2.3. Let A be the reduced adjacency matrix of a regular bipartite graph
G of degree k and girthg. Ifk > 3, then

s(4) > UC_Z)ZM 2.5)
Proof: Let
t=[s/(k—2)] 26)

where s = s(A). Let B realize the semibandwidth of A. Then the 1’s of B in its
first ¢ rows are contained in the first p columns where p=min{s+ ¢,n}. Let B’
be the leading ¢ by p submatrix of B. Then B' is the reduced adjacency matrix of
a bipartite graph with ¢ + p vertices and kt edges. Using (2.6) we obtain

kt>s+2t>t+p.
Hence G’ has at least as many edges as vertices and hence contains a cycle. Be-

cause G' is a (t, p)-bipartite graph, every cycle of G’ has length of most 2¢. It
follows that g < 2¢. Using (2.6) we now obtain 2.5). [}

We now show that there exist regular bipartite graphs of arbitrarily large girth.
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Lemma 24. Let k > 2 be an integer, and let c be an arbitrary positive even
integer. Then there exists a regular bipartite graph of degree k with girth equal to
C.

Proof: It follows from Theorem 1 of Sauer [3] that there exists a regular graph
H of degree k with girth c. Let V = {v;,...,v,} be the set of vertices of H.
Let X = {z1,...,z,}and Y = {y1,...,ya} be two disjoint sets of cardinality
n. We define an (n, n)-bipartite graph G = (X,Y’; E) whose edges are obtained

as follows: if {v;,v,} is an edge of H, then {z;,y;} and {z;,y;} are edges of
G (1 < i,j < m). Thus the (symmetric) adjacency matrix of H is the reduced
adjacency matrix of G. The bipartite graph G is regular of degree k. From acycle
of odd length ¢ in H we obtain a cycle of length 2¢ in G. From a cycle of even
length ¢t in H we obtain two cycles of length ¢ in G. On the other hand from a
cycle of length £ in G we obtain a cycle of length at most £ in H. Because H has
even girth ¢, we now conclude that G also has girth c. |

Theorem 2.5. Let k > 3 be an integer. Then there exist (0, 1) -matrices with
exactly k 1’s in each row and column having arbitrarily large semibandwidth .

Proof: The theorem follows by applying Lemma 2.3 and Lemma 2.4. [ |

3. Disjoint unions of complete bipartite graphs.

In this section we show how to realize the semibandwidth of a bipartite graph each

of whose connected components is a complete bipartite graph K. The reduced
adjacency matrix of K, is the all 1’s matrix J,; of size a by b. We first consider
the case of two complete bipartite graphs for which there is a simple expression
for the semibandwidth.

Theorem 3.1. Leta, b, m, and n be integers with0 < a < m,0 < b < m, and
m<n LetA= Jop ® Jmean-b. Then

s(A) = —1+ min{max{n— a,b},max{n— m + a,n— b}}.
Proof: Let
s+1
S
0 0
5 : 3.1)
- 0
*

realize the semibandwidth of A where s = s( A). We may permute the first s + 1
columns of B and assume that the 1’s in row 1 occur in the leftmost columns.
We may then permute the rows of B so that the rows identical to row 1 are the
uppermost rows and obtain a matrix which alsorealizes the semibandwidth of A. It
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follows that one of Jo4 @ Jm—a,n-b, aNd Jry—q n—b © Jop realizes the semibandwidth
of A. Ifitis Jop@ Jm—q,0-b>then s = max{b—1,n—a—1}. Ifitis Jp,_g ot ® Jas,
thens = max{n—b—1,n—(m—a) — 1}. 1

In order to determine how to realize the semibandwidth in the case of more than
two complete bipartite graphs, we further discuss the realization of the semiband-
width of the matrix A above.

We call an all 1’s matrix Jp, horizontal, square, or vertical according as
p< ¢,p= ¢q,0rp > g. We show that in realizing the semibandwidth of A

(i) avertical block precedes a square block precedes a horizontal block,

(ii) in the case of two vertical (respectively, horizontal) blocks the one with the
smallest number of columns (respectively, rows) comes first (respectively,
second), and

(iii) in the case of two square blocks both orderings realize the semibandwidth.

We choose our notation so that s'( Jgp @ Jm—qn-5) = s(A). Hence
max{b—1,n—a—1} <max{n—b—1,n—(m—a) —1}.

Casel. n—b—-1<n—(m—a)—1.

We have m — a < a, b, n— b and hence Jm—an-b is either horizontal or square.
If Jop is vertical, there is nothing to verify. If J,; and Jm—anb are both horizontal,
then the inequality m — a < a is in agreement with (ii). If J,; and Jm—an-b are
both square, then s'(Jap ® Jm—on-b) = &' (Jm-an-b © Jas) as required by (iii).
We are left with the possibility that J,;, is horizontal and Jm—an-b i8 square. Thus
m—a=mn—>band b > a. We have

§'(Jab ® Jm—an-b) =max{b—1,n—a— 1}=max{b—1,m—-b—1} (3.2)
and
8 (Jm—an—b ® Jap) = max {n—b—1, n—( m—a)—1}=max{n—b-1,b—1}. (3.3)

Because m —a < band m — a = n— b, we have 2b > nand hence b — 1 >
n—b—12>m—b— 1, and hence (3.2) and (3.3) have the common value b — 1,
in conformity with (i).

Case2. n—(m—a)—-1<n—b—1.

We have b < a,n— band b < m — a and hence J,, is either vertical or
square. Because m < m, the matrix Jp,_, - is €ither square or horizontal, and
the conclusions easily follow in this case.

If m > n we apply the above analysis to A?.

If A is a direct sum of any number of all 1°’s matrices, then the following theorem
shows how to realize the semibandwidth of A.
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Theorem 3.2. Letay,... ,ax and by, ... by be positive integers, and let A =
Jarby B .. ® Joyp,- Let

V={i:1<i<k, a;> b}
S={izlgigk,a,-=b.-}
H={i:1gi$k, a; < bi}.

Let iy,... i be a permutation of 1,... , k satisfying

i, € VUS, i, € H implies p < g, (3.4)
ip €V, i, € SUH implies p < g, 3.5)
ip,ig €V, b, < b;, imply p < g, (3.6)
ip,iq € H, ¢, > aj, imply p < gq. 3.7
Then
Jopbin @« O Jaybi (3.8)

realizes the semibandwidth of A.

Proof: It follows by induction using an argument like that in the proof of Theorem
3.1 that some matrix X of the form (3.6) realizes the semibandwidth of A. Suppose
that in this realization there were two consecutive blocks which violated one of
(34) to (3.7). It follows from the analysis preceding the statement of the theorem
that we may interchange the order of these two blocks and obtain a matrix Y with
§(Y) < s/(X). A finite number of interchanges leads to a realization of the
semibandwidth of A satisfying (3.4) to (3.7). [}

We conclude this section with an example illustrating Theorem 3.2. Let A be
the direct sum of Js 2, Ja 3, Js5, J2,4 and Ji3. Then

8(A)=5'(Js2®Ja3®Js5DJ24 0 J13).

4. Triangular numbers of a matrix.

Let A bean m by n(0, 1)-matrix, and let £ be an integer with —(m—1) < k< n
Let t),(A) equal the number of 1’s on or above the kth diagonal of A. We define
the kth triangular number ti( A) by

tx(A) = min{t,(PAQ)}

where the minimum is taken over all permutation matrices P and Q of orders m
and n, respectively. It follows that the semibandwidth of A satisfies

s(A) = —1+ min{k:t,(A) =0}.
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Let a and b be integers with 1 < a, b < n. The remainder of this section is
concerned with the triangular numbers of the matrix A = Jab @® Jn-an-b - Specif-
ically we determine a matrix P, AQ} where P, and Q& are permutation matrices
such that

t(A) = ti(PeAQr) (—(n—1) < k< m).

Without loss of generality we assume that b > a, n—a, n— b. The following
three cases arise: b > 2a; b > 2(n—a);and b < 2a,b < 2(n— a). These three
cases can be described using Figure 3.

y=n—x
0,0 ©,n)
I y=2(n—x)
o y=2x
I
(n,0) (n,n)
y=x

Figure 3. A partitioned n by n square

If we position an by b rectangle in the above figure in such a way that its upper
left vertex coincides with the point (0, 0) then its lower right vertex is at the point
(a, b) in the rectangle which falls into one of the three regions I, I1, or ITI (because
b>aandb > n— a). Thus the three cases described above correspond to the
three regions I, II, and II1.

Theorem 4.1. Leta, b, andn be positive integers withn > b >a, n—a,n—b
LetA = Juams © Jop and let k be an integer with —(n — 1) < k< n Then
there is a matrix

- Jn—o,r 0 Jn—a,s -
Bk-[ o 1, ] (r+s=n—b) @.1)

witht,(A) = t,.(By) where

r= 0 if one of the following holds: 4.2)
I()) b>2(n—0a) and k < b—2(n—a),
IIG) b>2a and k < n—2(n—a),

IIG) b < min{2(n—a),2a} and k < lb‘;—lJ — (n—a).
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s = 0 if one of the following holds: 4.3)
I(Gi) b>2(n—a) and k > n—2(n—a) + 1,
I@Gi) b>2a and k >2a—-b—-1,
b-—-1

MI(ii) b < min{2(n—a),2a} and k >a — l—z—J

r and s are chosen so that “4.4)

IGii) Ifb > 2(n—a) andb —2(n—a) < k < n—2(n— a), then the kth
diagonal of By, contains the (n—a — 1) th1 from the right in the first row
of T4 (the (n— a) th 1 works as well).

1IGiii) Ifb > 2a andn—2(n—a) < k < 2a—b—1, then the kth diagonal of By
contains the (a + 1) th 1 from the left in the first row of Iy (the (a + 2) th
1 works as well).
(i) Ifb < min{2(n— a),2a} and |%L| — (n—0) < k< a— |45], then
the kth diagonal of By contains the [ﬁ;—l-] th 1 from the right in the first
row of Joy (the | 5 | th 1 works as well).

Before sketching the proof of Theorem 4.1 we give a different description of
the conclusions of Theorem 4.1. We define the critical 1 of the matrix Jg to be
the 1 in the first row of J,; which is

the (n— a — 1) th from the right, if b > 2(n— a);
the (a + 1)th from the left, if b > 2a;
the [(b — 1) /2]th from the right, if b < min{2(n - a),2a}.

We note that since b < n, we cannot have both b > 2(n—a) and b > 2a. If
r = 0 in By, the critical 1 is above the kth diagonal of By. If s = 0, the critical 1
is below the kth diagonal of By. If rs > 0, the critical 1 is on the kth diagonal of
Bxg.

Sketch of the proof of Theorem 4.1: The theorem holds if n = 2, and the proof
proceeds by induction on n. The difficulty in the proof is in showing that t,(A) =

t}.( By) for some matrix B of the form (4.1). Let C be any matrix obtained from
A by row and column permutations. If k£ > 1, we delete row nand column 1 of
C; if k < 0, we delete row 1 and column n. After row and column permutations
the resulting matrix D is of the form J,_1-ca-1-4 @ Jea fOr some integers ¢ and
dwithc=aora—1landd =borb—1. WeletZ =k —1ifk > 1 and
2=k+1ifk < 0. Itis not too difficult to show that it is enough to complete
the induction in the case thatd > ¢, n— 1 —¢c,n— 1 — d. It follows from the
inductive assumption and our choice of row and column deleted from C that we
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may permute the rows and columns of C without decreasing the number of 0°s on
or above the kth diagonal of C to obtain either

B E, (k>1) (4.5)
o a
or o I
(k<0) 4.6)
E, l B
where
Ee= ["“-(‘)*-P T J'*-(‘)-“} (ptg=n-1-d), @)
te(D) = ty( Ey), 4.8)
and

one of (4.2), (4.3), and (4.4) holds

. 4.9
with m,a,b, k,r, s replaced by n— 1,c,d,2,p,q.

We only consider the case corresponding to I(iii). Thus we assume that
d22(n—l—c),d—2(n—l—c)<£<n—1—2(n—1—a) (4.10)
and the £th diagonal of E; contains the (n— 1 — ¢)th 1 from the right in the first

row of Jeg. In this case £ > 1. We might have k = 0, but we only treat the case
k > 0. Thus we have the situation of (4.5), namely

p d g
B |J 0 J n—1-c
B |0 J 0 c *
* | ag a3 a3 “4.11)

Here J denotes an all 1’s matrix of an appropriate size, If fr=0anda; = J,
then (4.11) has the form (4.1). Suppose ay = 0. Interchanging row n — ¢ and
row n of (4.11) does not decrease the number of 0 ’s on or above the kth diagonal
(because we lose g 0°s and gainn— 1 — c0’s,andg<n—1-d<n—1-¢).

If B, = J, we also interchange column 1 and column p+ 1 without any effect on
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the 0’s on or above the kth diagonal. We conclude that t,( A) < tj(By) forsome
matrix By of the form (4.1).

The arguments for the other eight cases are similar. At this point we know that
tk(A) = t}(Bs) for some matrix By of the form (4.1). It is now an elementary
exercise to show that t,( By) is maximized by choosing r and s according to the
rules given in (4.2), (4.3), and (4.4). 1
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