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Abstract. Bauer and Tindell defined the graph invariant A (G), for graphs G other

than paths and the star Ky 3,tobeﬂ1eleastnforwhlch G embeds in the nth iterated
line graph of G. They also proposed the problem of determining A (T) for all trees
T, In this note we completely solve this problem by showing that A (T) = 3 for
any proper homeomorph T of K1 3 and that A (T) = 2 for all trees T' which are
neither paths nor homeomorphs of K1 3.

Unless otherwise noted, we assume the notation of the book by Harary [2].
A graph is a pair G = (V, E) of sets with E a set of 2-element subsets of V;
the elements of V are called vertices (or points) of G and the elements of E are
called edges (or lines) of G. The edge with endpoints u and v is denoted by uv.
By an embedding of graph G into graph H we mean an injective mapping from
the vertex set of G into that of H such that adjacent vertices of G are mapped
to adjacent vertices of H. Recall that the line graph L(G) is defined to have as
vertex set the edge set of G, with two distinct edges being adjacent if and only
if they have a common endpoint. The nth iterated line graph is denoted L™(G).
Bauer and Tindell [1] noted that for every graph G other than a path and K 3,
there is an integer n for which G embeds in L*(G), and defined A (G) to be the
least such n. They then determined all graphs G with A (G) = 1, and proposed
that A (T') be determined for all trees T" other than paths and K ;. Herein we
solve this problem by first showing that A (T") = 2 for all trees T' which are
neither paths nor homeomorphs of K 3. If T is a proper homeomorph of K 3,
then L2 (T) has fewer vertices than 7" and thus A (T) > 2. We conclude by
showing that A (T) = 3 in this case.

If G = (V, E) is a graph, we will denote by P;(G) the set of all subgraphs of
G isomorphic to the path of length i. Note that we may identify in a natural way
Po(G) with V and P;(G) with E. We will denote an element of P;(G) by
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writing the vertices (without commas) in order of traversal from one endpoint
to the other: uou; ...u;. Notice that since we are considering the elements as
subgraphs (rather than walks), uou; ...u; and %;iU;1 ... uo denote the same
element of P;(G). The line graph L(G) has vertex set equal to the edge set
of G, with two such edges being adjacent in L( G) if and only if they have
a common endpoint in G. Thus, two edges of G are adjacent as vertices of
L(G) if and only if their union (as paths) is a path of length 2. Since a path of
length 2 has a unique representation as the union of two length-1 paths, we may
view the line graph as having vertex set P; (@) and edge set P,(G). By the
preceding, we see that the vertices of L2(G) may be identified with P,(G),
and two paths are adjacent as vertices of L2 (G) precisely when they intersect
inan edge. Notice that the edges of L2(G) may not be identified with length-3
paths of G, since the union of two length-2 paths of G which intersect in an
edge of G' may be isomorphic to K 3.

A graph embedding p: V(G) — V(I2(G)) = P,(G) of G into L2(G)
is an incidence embedding of G into L2(G) if every u € V(G) lies on the
length-2 path p(u).

Lemma 1. Ifu is a leaf of tree T and  is an incidence embedding of T —u
into L*(T—u), then p extends to an incidence embedding of T into L? (7).

Proof: Letv be the unique point of T'—u adjacent in T" with v. By the definition
of incidence embedding, there is a vertex w of T — u such that vw is an edge of
p(v). If we extend o by defining p(u) to be uvw, then the result is the desired
incident embedding of T into L2(T). ]

We now define a minimal tree to be a tree which is neither a path nor a
homeomorph of K 3, but is such that the removal of any leaf results in a tree
which is either a path or a homeomorph of K, ;3. Itis obvious that removal
of a leaf from a minimal tree cannot, in fact, result in a path, and, hence, must
result in a homeomorph of K 3. We will refer to the tree on 6 vertices with two
vertices of degree 3 and 4 vertices of degree 1 as the H -graph. The following
lemma is easily established.

Lemma 2. T is a minimal tree if and only ifT is K1 4 or 2a homeomorph of
the H -graph in which every leaf is adjacent to a degree-3 point.

Theorem 1. IfT is a tree which is not a path and not a homeomorph of K 3,
then there is an incidence embedding v of T' into L? (D).

Proof: In view of Lemma 1, we need only prove that the theorem holds for
minimal trees. By Lemma 2, we need consider only two cases. For the first
case, assume T" = K 4 and let ¢, u, v, w, z be the vertices of T, with ¢ having
degree 4. Then the desired incidence embedding is defined by ¢(¢) = ucw,
(1) = ucv, p(v) = vew, p(w) = wez, and ©(x) = zcu. The remaining
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case is where T' is a homeomorph of the H -graph in which every leaf is adjacent
to a degree-3 point of T'. Let c; and c; be the degree-3 points of 7. Next let
u;, v; be the leaves of T', and w; the nonleaf of T, adjacent to¢; in T, i =1, 2.
We define the desired incidence embedding ¢ as follows. For each degree-2
point z, p(z) is the unique length-2 path of T in which x has degree 2. As for
the other points, (u;) = uicivi, p(v;) = vicw;, (&) = wicw; (i=1,2). It
is straightforward to verify that p is an incidence embedding of T into LA(T),
so the proof is complete. [ |

Theorem 2. If T is a homeomorph of K1 3 other than K 3, then there is an
embedding of T into L (T).

Proof: Let c be the vertex of T with degree 3. Since T # K 3, we may choose
adegree-2 vertex  adjacent to c in T'; let u and v be the other vertices adjacent
to cinT'. Let y be the vertex adjacent to z with y # c. To define an embedding
p of T into L3 (T'), we need to map the vertices of T into the edges of L*(T),
which are the vertices of L3 (T'). Recall that an edge of L2(T) consists of a
pair of distinct length-2 paths of T which intersect in an edge; two such path
pairs are adjacent as vertices of L3(T) if there is exactly one path common to
the two pairs.

We first specify the value of p on the special vertices named so far: p(c) =
uctz, ver; p(u) = ucz, ucv; p(v) = veu, ver; p(T) = uct, czy; and e(y) =
czy, vez. Now consider a vertex z ¢ {u,v, ¢, , y} such that the unique path
225 ...2;_1c in T from z to c contains z. Then z has distance at least three
from c, and we define p(2) = 22223, z22324; p(2) is clearly outside the set
o({y,v,c,z,y}), so the map as defined so far is injective. Now consider a
vertex z € {u,v,c,x,y} such that the path from z to ¢ does not contain z.
Then z has distance at least 3 from z, SO we may write the unique z — z path in
T as zz3 ... 2 = and as before define p(2) = z23 23, 23 23 24 . This completes
the definition of : V(T) — V(L3(T)). Itis a straightforward matter to
verify that o is injective and preserves adjacencies, so that o is an embedding
of T into L3(T') as desired. (]
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