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Abstract. For all nonnegative integers 1, § let q(4, §) denote the number of all lattice
paths in the plain from (0,0) to (i, 7) with steps (1,0), (0,1), and (1,1). In this
paper it is proved that

q(inp™ + ...+ 90, ™ + ... + jo) = q(in,jn) - .-q(S0,j0) (mod p)

where p is an odd prime and 0 < ix < p, 0 < ji < p. This relation implies a
remarkable pattem to the divisibility of the array of numbers g(3, n.

1. Motivation.

Suppose that each square of the chessboard is represented by an ordered pair
(4, 7) of nonnegative integers. The chessboard is infinitely large in the sense that
the coordinates 1 and j can be arbitrary nonnegative integers. The starting position
of the king is the point (0, 0). Suppose that on such a chessboard the king can
move in three directions only:

(6D =G+ 1,7),6,7) = (4,7 + D,(6,7) - (i+1,j+1) M

Let ¢(4,/) denote the number of all different paths in which the king can reach
the point (1, 7). We will solve the following problems (compare [1, 2, 3, :

1 Inhow many ways can the king reach the square (4, ;) in exactly k moves?

2 In how many ways can the king reach the square (3, J) in general? (find
the number ¢(3, j)).

3 Display the divisibility properties of numbers ¢(i, 7).

2. Recurrence relations.

Let M (4,7, k) denote the number of all different ways in which the king can
move from the square (0,0) to the square (i,7) in exactly k steps of the form
(1). If we put m = max{i, j} then the following relations are clear: M(i,j,k) =
M(j,4,k), q(i,57) = q(j,9), M(i,0,k) = & and q(i,5) = Y47 M(4, 7, k).

k=m
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Ifk < mork > i+ then M (3, j, k) = 0, where §;; denotes the Kronecker delta.

An easy combinatorial argument gives the following recurrence formulas:
M(5,5,k)

= M(i—-1,7,k—=1) + M(4,j—1,k—1) + M(i—1,j—1,k-1)

9(4,/) =q(i—1,/) + q(4,j - D+ g(i—-1,j - 1) &)

fori > 1,7 > 1,k > 1. For each nonnegative integer i we introduce the
generating function G;(z) = E}':o q(3,7) 2’ and from (3) we get (see [1] for
details)

@

Gi(z) = (1+ 7)’(1 — )~ 1, @

The generating function G(z,y) in two formal variables z,y of the numbers
g(1,7) is defined by

G(z,9) =YY a(i, )’y ®)
=0 j=0
and from (4) we get .
G(z,y) = e p—— ©
=m0

010

Figure 1
A path of the king

If we use the same indexing scheme also for array of numbers M (3, 7, k) then
we can construct step by step from the relation (2) the tables for M (1, 7, k):

L S
M(i,J',2)1< 2 2) M(i,j,3) : 3 3
1

1
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In the same manner we obtain the table for the numbers ¢(3, 7):
19 41 129 321
1725 63 129
1513 25 41.
13 5 7 9
11 1 1 1
Explicit formulas for M (1, ) and ¢(4, ;) can be derived, for instance, by means
of the formal power series and the umbral calculus (see, for example, [4, 6, 8]),
but we give a simple combinatorial proof.
Therefore we adopt the convention: if n, m are integers then (™) = 0 for 0 <
n<morforn>0, m<O0.
The king must arrive from (0,0) at (3,7) in k moves, namely in i + J—k
diagonal steps, in i — (i+ j — k) = k— j horizontal, andin j — (i+j—k) = k—1i
vertical steps. Therefore we obtain

L k! OV
w6.ib =m0 (e Ly) O
Since q(4,7) = 57 M (4, , k) we have an explicit formula for g(i, )

k=m
i+) .
i =3 (5) (.} ) ®

k=m
Formulas (7) and (8) give solutions of Problem 1 and 2 presented at the beginning.
By a simple summation-index manipulation we get from (8) an attractive formula:

alir)) = kf; (5= > (0) (i)

k=m

where m = max{i, j} as before and y = min{i, j}.

Remark: Ifa, b, care natural numbers, then we can find also the number of colored
paths z(4, j; a, b, ¢), where the king marks each horizontal, vertical, and diagonal
step, choosing respectively any one of a colors, b colors, and ¢ colors (cf. [1]).
By the same combinatorial argument as by derivation of (3) we get the recurrence
relation

(4,73 a,b,¢)
=az(i—1,j;a,b,c) + bz(4,/—1;4a,b,¢) + cx(i—1,j—1;a,b,c)
fori > 1,7 > 1 and similarly as (7) the explicit formula

i+] .
(i, j30,b,c) = Y (':) (k l]) aF-Tpk=igiti-k, (10)

k=m

©®

It is clear that ¢(4,7) = z(4,j; 1,1, 1), moreover the solution of the difference
equation (9) is given by (10) which can be derived also for arbitrary positive num-
bers a, b, ¢ by using formal power series (see, for example, [1]).
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3. The numbers g(1, j) modulo p.

Here the divisibility properties of the numbers g(1, j) are studied. Since g(1, 7)
are odd numbers, some interesting results can be obtained for moduli p > 2.
We suppose that p here is always an odd prime. The array of ¢(4,) with the
boundary conditions g(0,7) = ¢(4,0) = 1 can be produced very quickly from
the recurrence formula (3). For p = 3 we have the array of remainders of dividing
g(4,/) by3for0 <i<17,0< 7 <17

121121121000000000
102102102000000O000O00
111111111000000O000O00
121212121000000000
102201102000000000
111222111000000000
121000212000000000
102000201000000O0O00O00O0
111000222000000O00O000
121212121121212121
10220110210220110 2
111222111111222111
121000212121000212
1020002011020002201
1171000222111000222
121121121121121121
102102102102102102
111111111111111111

Denote by ¢(4, /), the numbers g(4,;) modulo p and introduce forp = 3 the

matrix
1 2 1
A=[1 0 2].
1 1 1

The standard tensor (Kronecker product) in Z3, where Z denotes the ring of inte-
gers, gives

12121212 17

102201102

111222211

1A 2A 1A 121000212

AQA= [IA 0A 2A}= 102000201
1A 14 1A 111000222
121121121

102102102

11111111 1.
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This is exactly the array of ¢(i,7); for0 < i < 8,0 < J < 8. In the same
way we construct AQ A® A, AQ A® A® A, ... and we get the arrays q(i,7)s
for0 <i<3F—1,0<;<3% —1fork=3,4,... respectively. We shall
generalize this construction for an arbitrary odd prime p.

Theorem 1. Letp be an odd prime. Then the following relations hold over Zp:

L g(p,i)=1,0<i<p;
2. ¢(p—-1,9)+g(p—1,i—1)=0, 1<i<p;
4. P g(k,p—1) =1.

Proof: During the proof we always calculate in Zp.

1. We need the fact that
p+k\ _ [k
i ) \u

for each prime p and each nonnegative integer 4, i < p, (see, for example, [9]).
Suppose that 0 < i < p, where p is an odd prime. Because of (8) we have

i+p . Y . i .
) k 1 p+k\ /i k\ /1
=3 (005) -5 )@ -5 00
o\ k—p pirs 1 k 5 \i k
2. From the recurrence formula (3) we obtain for 1 <i<p
a(pi) =q(pi-D+q(p—1,i) +g(p—1,i-1).

The assertion 1 implies g(p,i) =1 and ¢(p,i—1) = 1. Thus g(p—1,9)+q(p-1,
i—1)=0.
3. Denote by S; the sum

p-1

Yaki, 0<j<p-2.

k=0
From the recursion formula for ¢(1, j) we get by an easy calculation the relation

Sj + Sj_1 = Sj - Sj_l .

This relation implies 2.S;_; = 0 and finally

So=Sl=Sz=...=Sp_2=0.
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4, Since p is an odd prime, we have

q(0,p—1) + g(1,p—1) + g(2,p—1) +...+ g(p—2,p—1) + g(p—1,p—-1)
=1+(g(1,p—1)+q(2,p—1))+...+(g(p—2,p—1) +g(p—1,p—1)) =1

because of 2. ]

The consequence of this theorem is the following form of the array of ¢(i, 7),
for0 <i<p, 0<j<p

1 p—1 1 p-—-1 ... 1
1 * * * . p—1
1 3 * * ... p—1
1 1 1 1 1

By a fixed prime p the whole array of g(, /), is determined. Note that we choose
always 0 < gq(4,7)p < p. The origin for the subscripts 1, j is at the lower left
corner. We introduce the matrix A with the entries a;; by

aj=q(p—1-1,7)p @n
for0 <i<p, 0<j<p
Theorem 2. For every odd prime p the following assertions hold in Zy:
1L Y0 oaw=300ay=0, 1<i<p-2,0<j<p-2;

2. Y2 aok=1, Yhgakp1=1;
3. A% = I, where I denotes the unit matrix.

Proof:
1. Assertions 1 and 2 are direct consequences of Theorem 1. It is easy to prove
that over Z, q(4,7) = q(i,p+j) = ¢(i,2p+j) = ... . If B = A? then for
0<i<p, 0<j<p
p-1
Ea,kak, Y ap—1-i,kep—1-k,J).
k=0 k=0

For integers v and v using (4) we derive in the sense of formal power series

(1+)*'(A -2 =(1-2)7" Y q(u+v,ks

k=0

j
Eq(u,k)qw,;‘— k)z’
=()

k

MB EMB

j
Eq(u+ v,k)a:j.

k=0

~.
1l
(=]

313



Thus
Zq(u k)a(v,j — k) -Zq(wv k)

k=0
for every integer j. The substitution j = p— 1, u = p—1—14, v=7jfor
0 <i<p,0<j<pyields

p—1 p-1
D ap—1-i,k)g(,p—1-K) =Y qp—1—i+j,k) =&
k=0 k=0

using Theorem 1. It follows that b;; = &;; or equivalently B = I. [ ]

For each odd prime p the minimal polynomial of A over Zp,isp(X) = N2 —1
=)+ p—1.

Theorem 3. For each odd prime p the following relation holds for every pair of
nonnegative integers 1, j:
9(4,/) = q(in, jn)q(in-1,jn-1) ...q(40,j0) (mod p), (12)

where i = i,p" +1,1p™ ! +... 440, j = juD"+ a1 p™  +...+Jo, 0 < ik < p,
0<Ljk<p.

Proof: Wewritei = ap+b, j = cp+d, where a, c are quotients and b, d remainders
of dividing 1, j by p respectively. Since0 < b < p,0 < d < p the numbers
g(b,d) are elements of the matrix A. We will prove that in this case over Zy
q(1,7) = q(a,c)q(b,d). Since in the field Z, (a + b)? = oP + bP, then (f(z,y) +

9(z,v))? = f(z,y)? +g(z, y)? for any two formalpowerserles f(z,9),9(z,v)
with coefficients in Zp.

Fori=0,1,...,p— 1 we introduce the polynomials S;( ) by
p-1
Si(z) =) q(i, o'
=0
specially, from this definition we get
So(z)=1+z+22+...+ 3P 24 gp!
and from Assertion 2 of Theorem 1
Spa(z)=1—-z+ L S
From (3) we get for 1 < i < p — 1 a new recurrence formula

(1 -12)8i(z) = (1+ 2) 81 (7).
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Introducing the sum S(z, y) by

p—-1 p-1
S(z,9) =Y, Y a(i, )=y
=0 j=0
we sec that
p-1
S(z,y) = Y Si(y)7’
i=0
and an easy calculation gives
P(1 + ¢P
S(a,) = So(s) + L sz, - T,
Over the field Z,, we finally get
p—1
S(z,9) =) _(z+y+zy)t.
k=0
From the generating function (5) we find that
oo p-1
Eun Nay = E<z+ y+ap)" =Y Y (z+y+zy)
i=0 ;=0 j=0 k=0
co p-1 )
= EZ(:D"-’- v + 2PyP) (2 + y+ zy)t
j=0 k=0
p-1 p-1
= EZq(a A)zPy Y Y a(b,d)z’y’
d=0 c=0 =0 d=0

Equating coefficients of z*y’ shows thatif i = ap + band j = cp + d then in
Z, q(4,7) = g(a,c)q(b,d). By induction we finally obtain the relation (12). 1
This theorem implies that all information about the numbers g(4, /), lies in the
matrix A given by (11). Denote by A, AP A®) | the mamoesA A®A
A® AQ®A,... respectively. They are square-matnces of orders p, p?, p°,-
respectively and their entries are g(, j)p determined from (12). In particular, for
p =7, we obtain:
i 7 (1A 6A 1A 6A 1A 6A 147
14 4A 5A 0A 2A 3A 6A
1A 2A 6A 3A 6A 2A 1A
,AP=114 0A 4A 0A 3A 0A 6A
1A 5A 6A 4A 6A 5A 1A
1A 3A 54 0A 2A 44 6A
J |14 14 14 1A 1A 1A 1A

A=AD =

[
—-wWwnoNP~PR
-t N DB QNN
— O HOWODNRN
= NAWAN =
- A UNOoONWLWR
— O\ = O\ = O\
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We introduce in A? over Z, the indexing of the blocks B(1, ;) as follows: B(i, 5)
= ¢(4,7) A. For B(4, ) the same rule as for the numbers g(1, ) is valid:

B(1,))=B(i-1,))+B(i,j-D+B(i—-1,j-1), i>1,j>1,

with the boundary conditions B(0,;) = B(3,0) = A. This can be generalized
for the matrices A®) for k > 2. We say that the array of g(i, Pp is self-similar
If we mark black the points (1, 7) for which g(i, j )p = 0 (or equivalently ¢(1, ;)
is divisible by p) we obtain pictures of a remarkable design. The picture was
constructed by a computer for 0 < 1 < 175, 0 < j < 175. For small p each
point can be coloured differently according with the number g(3, 7)p- The obtained
picture displays the divisibility properties of the numbers ¢(i, ).

Let 2(k,p), k=1,2,... denote the number of zeros in the matrix A® for a
given odd prime p.

Theorem 4. For every odd prime p and k > 1 the number 2(k,p) of all zero
entries of the matrix A® is given by the formula

z(k,p) = p** — [p* — 2(1,p)1*. (13)

Proof: Since A%**D = A® A® over Z, we obtain a simple recurrence formula

z(k+1,p) = z(k,p)[p* — 2(1,p)] + 2(1, p)p**

and by induction we verify now (13) very easily.
Forp =17 we get 2(1,7) = 5, 2(2,7) = 465. Theorem 7 says that A% = ],
moreover, we can prove that over Z, in general

(AP =1

forall k > 0. Specially, [A?]2=(AQ A) (AR A=A QR A%=IQ I=1I. §

The author found the ideas for the study of number array modulo ¢ prime in
09, 10].
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Figure 2
The pattern to the divisibility of numbers ¢(4, /) byp=7

317



References

L.R.D. Fray, D.P. Roselle, Weighted lattice paths, Pacific J. Math. 37 (1971),
85-96.

2. LM. Gessel, A factorization for formal Laurent series and lattice path enu-
meration, J. Comb. Theory (Ser. A) 28 (1980), 321-337.

3.1.S. Lew, Polynomial enumeration of multidimensional lattices, Math. Sys-
tem Theory 12 (1979), 253-270.

4. 1. Niven, Formal power series, Amer. Math. Monthly 76 (1969), 871-889.

5. M. Razpet , An application of the umbral calculus ,J. Math. Anal. Appl. (to
appear).

6. J. Riordan, “Combinatorial Identities”, Wiley, New York, 1968.

1. D.G. Rogers, A Schrider triangle: three combinatorial problems, in “Com-
binatorial Identities”, Wiley, New York, 1969.

8. S. Roman, “The Umbral Calculus™, Academic Press, Orlando, Florida, 1984.

9. M. Sved, Divisibility — with visibility, The Math. Intelligencer 10 (1988),
56-64.

10. S. Wolfram, Geometry of binomial coefficients, Amer. Math. Monthly 91

(1984), 566-571.

318



