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Abstract. A construction is given of a family of D-optimal designs of ordern=2v =
2 (mod 4), where y = 2¢q% + 2¢ + 1 and g is an odd prime power. For ¢ > 3 all the
orders of D-optimal designs produced by this construction are new.

Ehlich [6] has shown thatif n = 2 (mod 4),v = n/2 and M, N are v x v
commuting matrices with elements +1 such that

MMT + NNT = Qu—-2)I,+ 2J,,

then the n X n matrix
o e 2]
has the maximum determinant among all n x n £1 matrices.

Such matrices D are called D-optimal designs of order n. As of the year 1987
their construction was known for the following values of n: 2, 6, 10, 14, 18,
26, 30, 38, 42, 46, 50, 54, 62, 66, 82, 86 (Ehlich [6], Yang [11], [12], [13], [14],
[15], Chadjipantelis and Kounias [4], Chadjipantelis, Kounias and Moyssiadis [5],
Kharaghani [7]).

In 1988 Koukouvinos, Kounias and Seberry [8] constructed the infinite family
of D-optimal designs summarized in the following theorem.

Theorem 1. There exist D-optimal designs of order n= 2 (mod 4), where
n=2v=2(g>+q+1)

and q is a prime power.

The cases ¢ = 2,3,4 and 5 of this construction produce the already known
orders n = 14,26,42 and 66. However, beginning with the case ¢ = 7 which
produces the order n = 114 all the other orders are new.

For further information on D-optimal designs see the interesting account in [8].

The purpose of this note is to establish the following supplement to Theorem 1.
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Theorem 2. There exist D-optimal designs of order n = 2 (mod 4), where
n=2v=2(2¢+2¢+1)

and q is an odd prime power.

Theorem 2 closely resembles Theorem 1 and produces additional orders of D-
optimal designs. The case g = 3 produces the already known order n = 50 (see
the constructions of Yang [14], and Chadjipantelis, Kounias and Moyssiadis [5]).
Beginning with the case ¢ = 5 which produces the order n = 122 all the other
orders are new.

Although the case when g is a power of 2 is excluded in the statement of The-
orem 2 it should be noted that the cases ¢ = 2 and ¢ = 4 produce the already
known orders n = 26 and n = 82. The case g = 8 produces n = 290. There is
no D-optimal design known of this order.

The proof of Theorem 1 in [8] makes use of supplementary difference sets
whereas the proof of Theorem 2 in this note is based on aremarkable construction
of symmetric block designs due to A. E. Brouwer [3]. A symmetric balanced in-
complete block design SBIBD with parameters v, k, A can be defined as a square
(0, 1)-matrix of order v with & 1’ in each row and column and with the inner
product of a pair of distinct rows equal to ). For details about the properties of
such designs see the book by W. D. Wallis [10]. The construction of Brouwer is
summarized in the following theorem.

Theorem 3. There exist SBIBD’s with Pparamelers
v=2"+ gt 1,
k=gh

_1 h-1
z\—zq (¢g=1)

whenever q is an odd prime powerand h > 1,

Corollary. For h = 2 Theorem 3 states that there exist SBIBD'’s with parameters
v=2q2+2q+ 1, k=¢%, )= -;—q(q— 1)

whenever q is an odd prime power.

The possibility that the statement of the Corollary is also valid when gisa
power of 2 is not precluded. The case ¢ = 2 produces the parameters ( 13 ,4,1)
of the familiar finite projective plane of order 3. The case g = 4 produces the pa-
rameters (41,16 ,6). Symmetric block designs with these parameters have been
constructed by Bridges, Hall and Hayden [2] and by Trung [9]. The case ¢ = 8
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produces the parameters (145,64 ,28). There is no SBIBD known with these
parameters (see the book by Beth, Jungnickel and Lenz [1, p. 627]).

We now deduce Theorem 2 from the Corollary. Our method is motivated by the
construction of Kharaghani [7] of a D-optimal design of order 82.

Let A be the incidence matrix of the design in the Corollary. Then Aisa(0,1)-
matrix of order v which satisfies the equation

AAT = (k= ) I+ ).
The (-1, 1) -incidence matrix of the design is given by S = 24 — J where
SST =4(k— NI+ (v—4(k=)))J

which reduces to
SST=2( +q)I+J.

p=[% §]

Thus the matrix

is a D-optimal design of order
n=2v=2(2¢*+2q+1).

This completes the proof of Theorem 2.
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