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Abstract. An S, distar-factorization of DK is an edge partitioning of the complete

symmetric directed graph DK, into subdigraphs each of which is isomorphic to the
distar S, (the distar S, being obtained from the star Ky ,+¢ by directing s of the
edges into the centre and ¢ of the edges out of the centre). We consider the question,
“When can the arcs of DK, be partitioned into arc-disjoint subgraphs each isomorphic
t0 5,47 and give necessary and sufficient conditions for S, ¢ distar-factorizations of
DK, in the cases when eitherm =0 or 1 (mod s+ t).

1. Introduction

Over the last few years there has been considerable work done on the existence
of CD(m,n,c,)\)-designs. These designs are edge- partitions of A\Ky,(n), the
complete m-partite multigraph with n vertices in each part and in which each edge
has multiplicity ), into complete bipartite subgraphs K (called claws or stars).
(The acronym CD stands for claw-decomposition.)

The case first considered was n= 1 (when AK (1) is simply AK,,). Early
progress on the problem was made by Cain [1] and later Yamamoto et al [12] gave
necessary and sufficient conditions for the existence of CD(m,1,c, 1)-designs
(as did Huang [2]) and for the existence of CD(m, 2,c, 1). These results were ex-
tended by Ushio, Tazawa and Yamamoto [11] who found necessary and sufficient
conditions for the existence of CD(m, n, ¢, 1)-designs and by Tarsi [5] who gave
necessary and sufficient conditions for the existence of CD(m, 1, c, ))-designs.

There have been two generalizations of the problem; one of which has been
completely solved. A BCD(m,n,c, X)-design is a balanced CD(m,n,c,X)-
design where balance refers to the fact that each vertex lies in the same number
of stars in the design. The question of the existence of these designs has been
resolved by Ushio [9], (10] who gives necessary and sufficient conditions for their
existence. (However, other authors [3], [4] had previously obtained results for
special cases of the problem.)

A PCD(m,n,c, »)-design is a partitc CD(m, n, c, \)-design if each sub-
graph K ¢ of the design has the property that no two of its vertices lie in the same
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part of A K;(m). Tazawa, Ushio and Yamamoto [7] have given necessary and
sufficient conditions for the existence of PCD(m, n, ¢, 1)-designs.

We wish to propose yet another generalization, but first we require two defi-
nitions.

The directed star S, is obtained from the star K ,.¢ by directing ¢ of the
edges out of the centre and s of the edges into the centre of the star. We refer to
this directed graph as a distar. If A is a graph we will denote by DA the symmetric
directed graph obtained from G by replacing each edge {z, y} by the two arcs
(z,y) and (y, ).

We are interested in the following question: When can the arcs of DK,,
be partitioned into arc-disjoint subgraphs each isomorphic to S, ;? We call such a
partitioning an S, ; distar-factorization of D K. (More generally we might ask for
the existence of DCD(m, n, s,t, \)-designs; that is, for S, distar-factorizations
of \DKn(m).) Observe that we may assume s > ¢ since there is an S,,¢ distar-
factorization of D K, if and only if there is an S; , distar-factorization of DK ,,.

Necessary conditions are easily determined.

Theorem 1.1. If DK,, has an S, distar-factorization, then
@ m(m-1)=0 (mod s+1t),
®) m>s+t+1,and
© 12 > (250

Proof: Condition (a) comes from counting arcs in the distar and arcs in DK,y,.
Since each distar contains s+ ¢t + 1 vertices, (b) follows. Each vertex has indegree
m — 1, and hence is the centre of at most | = | distars. On the other hand there

are ™(m=1) distars in the factorization and thus the average number of centres on

a given vertex is %%)';nll = 2= | Inequality (c) now follows. (]

In this paper we give necessary and sufficient conditions for S, ¢ distar-factoriza-
tions of DK,, whenm =0 or1 (mod s+ t).
22m=1 (mod s+1t)

In this section we will deal with the case m = 1 (mod s + t). The first results
require no proof.

Lemma 2.1. There is an S, distar-factorizations of DA if and only if A is
regular of degree ks.

Corollary 2.2. Thereisan S,y distar-factorizations of DK, if and onlyif m =
1 (mod s).

Lemma 2.3. Thereisan S,s, s > t, distar-factorization of DK ,.4,, if and only
If K 44441 has an s-factor.

Proof: Supppose that DK,.:,, has an S, distar-factorization and consider the
subdigraph H whose arcs are precisely those arcs which were directed into the
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centre of some distar in the factorization. This subdigraph is symmetric and each
vertex has indegree a multiple of s. The number of distars in the factorization is s+
t+ 1 and we will show that each vertex is the centre of exactly one distar implying
that H is regular of indegree s and so corresponds to an s-factor in Kaete1.

Each vertex of D K,s.1 has indegree s+t < 2 s and except when ¢t = s there
can be at most one distar at each vertex (and hence exactly one). Whent = s, if
a vertex is the centre of two distars, then the remaining digraph is DK, which
has no S, subdigraph, a contradiction .

If K 5+¢+1 has a degree s subgraph H , put a distar ateach vertex £ of D Ket+1
so that the endpoints of its in-arcs are the vertices adjacent to z in H. [ |

Corollary 2.4. There is an S,t, 8 > t, distar-factorization of DK g4t41 if and
only if s ort is even.

Proof: By Lemma 2.3 we need only show that K.+ hasan s-factor if and only
if at least one of s and t is even. The necessity of the conditions is obvious. For
the sufficiency: if s + t + 1 is even take the union of s 1-factors in K s+¢+1, and if
s+t + 1 is odd take the union of s/2 Hamilton cycles in K, ¢+1. 1

Observe that Corollary 2.4 shows that the necessary conditions given in The-
orem 1.1 are not always sufficient.

Lemma 2.5. The complete symmetric bipartite digraph DK (s+t),r(s+t) has an
S,z distar-factorization, ¢ > 1,7 > 1.

Proof: Consider first the digraph DK sst,s+¢. SiNCE K g4t,6+¢ CONLAINS an s-factor
(take the union of s I-factors) and is regular of degree s + ¢, then by the argument
of Lemma 2.3 it follows that DK y.¢ 4+¢ has an S, ; distar-factorization. The result
now follows as DK g(s+) r(s+t) is the union of gr copies of DK git,5+t- 1

Lemma 2.6. There is an Sz, s > t, distar-factorization of DK3(ssty+1 for all
values of s and't.

Proof: Label the vertices of K3(s+t)+1 by the integers 0,1,2,---,3(s+ t). Let
T;,0 < i < t — 1, be the 6-regular subgraph defined by E(Ty) = {{j,j+3i+
1},{j,j+3i+2},{j,j+3i+3}:0 <j < 3(s+ t)} where all addition
is modulo 3(s + t) + 1. Let A = Ka(sety+1 — Ungict-1 B(T5). Clearly A is a
regular graph of degree 3(s — t) and so DA has an S0 ¢ distar-factorization in
which each vertex j is the centre of 3 distars which we denote by X;, X2; and
X3;. To each of these distars we add exactly one in-arc and exactly one out-arc
from each DT;, 1 < i < t — 1, as follows: To X,; add the arcs (j,j + 31+ m)
and (j + 3i + n+ 1, ) where arithmetic is modulo 3 on the residues j + 31+ 1,
j+3i+2,j+3i+3. Thisyieldsan S,¢, s > t, distar-factorization of D K3(s+t)+1
for all values of s and t. 1
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Theorem 2.7. There is an Sst, 8 > t, distar-factorization of DK as+ty+1 for all
values of s,t and g except in the case when g=1 and both s and t are odd.

Proof: If one of s and ¢ is even observe that the arcs of DK a(s+t)+1 Can be parti-
tioned into g(g — 1) /2 copies of DK, a+t,s+t and g copies of DK .. By Lemmas
2.3 and 2.5 we know that in this case both DKyt 4t and DK gy4,1 have S, distar-
factorizations, and hence so too does DK y(g+t)+1-

Suppose now that both s and ¢ are odd. We know by Lemma 2.3 that there
is no S, distar-factorization when g = 1. Lemma 2.3 also tells us that there
is an 8,,,, distar-factorization of DKj,42¢+1 and, since there is an S, distar-
factorization of S, 2t We have an S, ; distar-factorization of DK34424+1. So the
case ¢ = 2 is also resolved. The case ¢ = 3 has already been taken care of in
Lemma 2.6.

If g is even (¢ = 27), then DK y(peeys1 = DK y4+1)+1 the arcs of which
can be partitioned into r(r — 1) /2 copies of DKj(erty 2541y and r copies of
DKy(4+ty+1. Since each of these subdigraphs has an S, distar-factorization,
the result follows.

Ifgisodd (¢ = 27+1),then DK g(s+t)+1 = DK (2541)(s+1)+1 the arcs of which
can be partitioned into (r — 1) (r—2) /2 copies of D Ko(s+1) 2s+t), T— 1 copies of
DK3(s+1) 2(s+t), T — 1 copies of DK(4+1)+1 and one copy of DK3(41+1. Since
each of these subdigraphs has an S, s,2¢ distar-factorization (Lemmas 2.5 and 2.6),
the result follows. 1

3. m=0 (mod s+t).

We now turn our attention to the case m = 0 (mod s+ t). In this case all
will be dealt with in one theorem.

Theorem 3.1. There is an Sst, 8 > t, distar-factorization of DK (g4t for all
values of s, t and q except when q = 1, and whent = 0.

Proof: From Theorem LI(b) we know that g 2> 2, and from Theorem LI(c), if
t = 0, then we must have gs — 1 =0 (mod s) which is impossible.

Consider first the case when one of s and ¢ is odd. Observe that the arcs of
DK g(s+1) can be partitioned into g(g — 1) /2 copies of DK .+ .+ and g copies of
eachof DK,,;. Observe thateach copy of DK s+t,0+¢ has an S, ; distar-factorization
so that each vertex of the DK s+,5+¢ lies in exactly one S, ;. Thus, so far, each ver-
tex of DK g(s+4) lies in g — 1 distars and the arcs remaining are exactly the arcs
of the g copies of DK yv¢. Now DKyt = DKoty + {y}, where y is a vertex
of DK ,ys. Since DK yyyy = DK(s-1y+(t-1y+1 and one of s and ¢ is odd, then
DKyt has an S,_; ;_; distar-factorization. Let X be one of the S,_; ¢ dis-
tars so defined and let z be its centre. From the above discussion z is also the
centre of some S, distar X’ in one of the DK 51454+ Then in that distar there is
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an arc (z, z) where z ¢ V(X). Remove the arc (z, z) from X' and replace it
with the arc (z,y). At the same time add the arcs (z, z) and (y,z) to X. Re-
peat this procedure in each copy of DK+ t0 obtain an S, distar-factorization of
DK q(s+t) -

The remaining case is when both s and ¢ are even. First we will show that
DK+t has an S,.g distar-factorization. Since DK g4t = DK (s—1)+t+1 then it has
an S, ; distar-factorization. Again, the arcs of DK3(s+t) can be partitioned into
two copies of DK ,+¢, which we denote by G and H and one copy of DK git s+t
In each of G and H distinguish a vertex g and a vertex h respectively. Then the
arcs of DK 444 +¢ Can be partitioned into one copy of DK ,4¢_1 +¢—1 denoted B,
and all of the arcs to and from g and h. Observe also that D K y.¢—1 s+t—1 has an
S, -1 distar-factorization. Now, consider vertex z ¥ g in G. This vertex is the
centre of an S,_1 ¢ in G and the centre of an S,¢—1 in B. To the S,_; ¢ add the arc
(h, 7) and to the S, add the arc (z, h). Thus both distars become S,;. We do
the same for each vertex y # h in H but use the arcs (g, y) and (y, g). There still
remains an S,_; ; centred at g and another centred at h. To the one centred at g
add the arc (h, g) and to the one centred at h add the arc (g, ). We now have an
S, distar-factorization of D Ka(s+1)-

We next show that there is an S, distar-factorization of DK+ as these
two results are then, as in Theorem 2.7, sufficient to obtain the more general result.
Now DKa(ssty = DKa(srty—1 + {z}. From Ks(ss1)—1 deletea Hamilton cycle H.
Then Ka(a+ty—1 — H is regular of degree 3(s +t) — 4 and so has an S35-2 3t-2
distar-factorization (by the same argument as in Lemma 2.3) with one such distar
centred at each vertex. The arcs of each S3,_2 3¢—2 can be partitioned into an Ssits
an S, ;andan S,;_». Toeach vertex of DK3(s+1y—1 We associate exactly one of
the two edges of the Hamilton cycle H which are incident with it. Then if vertex y
has associated edge {y, y'}, we add the arcs (', y) and (z, y) tothe S,_2 ¢ centred
at y and the arcs (y,y') and (y, z) to the Sy 2 centred at y. We now have an S,
distar-factorization of D K3(s+t)- [ |

Using Theorem 3 .1 and the fact that K> (n) has a 1 -factorization we obtain
the following corollary.

Corollary 3.2. There is an S,4, s > t, distar-factorization of DK y(s+ty(m) for
all values of m, s,t and q except whenq = 1, and whent=0.

4. Remaining questions

The original question of the existence of CD(m, n,c, )) -designs remains unre-
solved when both nand ) are at least 2. In only one of the generalizations has the
problem been completely solved and that is for the existence of BCD(m,n,c,\)-
designs. The question of the existence of PCD(m,n,c, \)-designs is unsolved
for A > 2,and the existence of DCD(m, n, 8,1, \)-designs is largely unresolved.

There is one other generalization which should be mentioned. This is the
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problem of finding edge-partitions of AKp(m,m2,- -+ ,m), the complete m-
partite multigraph with n; vertices in the §’th part and in which each edge has
multiplicity ), into stars K; .. Yamamoto et al [12] resolved the problem for
A =1 and m = 2 and Truszczyriski [8] resolved it for \ = 1 and m = 3. Both

Truszczyfiski [8] and Tazawa [6] have obtained further results on this particular
problem.
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