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Abstract. The paper deals with combinatorial structures (pseudo-complexes, crystal-
lizations) giving a direct link between the topology of triangulated manifolds and the
theory of edge-coloured multigraphs. We define the concept of regular crystallization of
a manifold and prove that every non-trivial handle free closed n-manifold has a regular
crystallization. Then we study some applications of regular crystallizations and give a
counter-example to a conjecture of Y. Tsukui [20] about strong frames of the 3-sphere.

1. Introduction.

K. Kobayashi and Y. Tsukui introduced the concept of ball coverings for con-
nected compact n-manifolds in [12]. The second author showed in [20] how to
represent ball coverings of closed 3-manifolds by means of edge-coloured graphs,
called generalized graphs. Some properties of special generalized graphs (named
weak- and strong-frames , respectively) were also studied in [20]. The main pur-
pose of the quoted paper was to construct ball coverings with nice intersection
properties for any handle free closed 3-manifold (see also Section 2). As a direct
consequence of these results, Y. Tsukui stated a conjecture ([20], Conjecture 5.4)
about strong-frames which represent the 3-sphere (Section 4).

In the present paper we relate frames to another graphical representation of man-
ifolds (named crystallization theory), first introduced by M. Pezzana in [17].

Then we introduce the definition of regular crystallization for a closed con-
nected n-manifold (Section 4). It partially extends to dimension n the notion of
strong-frame of a closed 3-manifold. Regular crystallizations are proved to exist
for any closed non-trivial handle free n-manifold. The proof, performed by us-
ing a constructive procedure, is completely different from the one given in [20]
for the dimension 3. Therefore our proposition also implies the main theorem of
[20] as a simple corollary. Then we can construct a counter-example to the above
mentioned conjecture of Y. Tsukui by starting from a Heegaard diagram of the
3-sphere shown in [16]. Finally we study some applications of the concept of reg-
ular crystallization to minimum crystallizations , the Heegaard genus of a closed
3-manifold (Section 4) and combinatorial pseudo-handles in graphs (Section 5).
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2. Notation.

LetA, betheset {0,1,... ,n} and N, = A, — {0}. The symbol # X means the
cardinality of the finite set X. Throughout the paper, we work in the piecewise
linear (PL) category (see [8], [18]). All manifolds are connected and compact.
The prefix PL will always be omitted.

If S™ denotes the n-sphere, then we will write S™! ® S! to indicate either
the topological product S™! x §! or the “twisted” sphere bundle S™! x §!
(see [19]). A closed n-manifold M is said to have a (topological ) handle if M
is homeomorphic to the connected sum N # (S™' ® S') for a suitable closed
n-manifold N. Otherwise M is said to be a handle free n-manifold. We say that
M is trivial (resp. non-trivial) if M is (tesp. is not) the n-sphere S™. A closed
n-manifold M is said to be prime if M = M, # M, implies that either M; or M,
is trivial.

LetG = (V,E) beagraph where V = V(G) and E = E(QG) are the vertex set
and the edge set of G, respectively. The term graph will be used instead of finite
undirected multigraph without loops (multiple edges are allowed). As general
reference for graph theory see [9].

Ife = (u,v) is adirected edge in E, then we also write u = e(0) and v = e(1).
A coboundary of G is aset of edges H C E(G) for which there exists a partition
(V', V") of V so that the elements of H are exactly the unique edges between V'
and V". In particular, the graph G is bipartite if and only if E(G) is a coboundary.
Given a non-empty finite set C, an edge-colouration of G with colour set C is a
map c: E(G) — C such that c(e) # c( f) for any two adjacentedges e, f € E.
An (n+ 1)-coloured graph with boundary is a pair (G, c) where G is a graph and
c: E — A, is an edge-colouration of G with colour set A,. A boundary vertex
of G is a vertex of V whose degree is strictly less than n+ 1. If G has no bound-
ary vertices, then (G, c) is simply called an (n+ 1)-coloured graph. For every
subset I C A,, Gr is the subgraph (V,c~!(I")). Each connected component
of Gr is said to be a I'-residue. We will call i-coloured edges the {i}-residues
of G foreach i € A,. An {3, j}-coloured cycle is a cycle of the subgraph Gr,
where I' = {4,j} C A,. Foreachi € A,, we set1 = A, — {i}. The defini-
tion of colour isomorphic graphs is the standard one. An n-pseudo-complex K
is a homogeneous n-dimensional ball complex in which every h-ball, considered
with all its faces, is abstractly isomorphic to the closure of a standard n-simplex
(see [11], p. 49). Thus we will always call the balls of K simplexes. If s is a
simplex of K, then the disjoined star std(s, K) is defined as the disjoint union
of the n-simplexes of K containing s, with re-identification of the (n— 1)-faces
containing s and of their faces. Given an (n+ 1)-coloured graph (G, ¢), with
or without boundary, an n-pseudo-complex K = K(G) can be associated with
(G, ¢) so that |G| becomes its dual 1-skeleton (see [4]). The construction can be
easily reversed (see [5]) so that (G(K(G)), ck(c)) and (G, ¢) are colour isomor-
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phic graphs. Furthermore, if | K| is an n-manifold, then K (G(K)) is abstractly
isomorphic to K and the graph (G(K), cx) will be said to represent |K|. If, for
every colour i € A,, the subgraph G; is connected, then K (G) has exactly n+ 1

vertices and both K(G) and G are said to be contracted . A crystallization of a
closed n-manifold M is a contracted (n+ 1)-coloured graph (G, c) representing

M. In this case, the pseudo-complex K (G) is called a contracted triangulation
of M. Every closed n-manifold admits a crystallization (see [17]). For a survey
on crystallizations we refer to [4].

3. Graph moves.

In order to prove our statements we need some definitions given in [1], [2]. Given

an (n+ 1) -coloured graph (G, c), let H be a subgraph of G induced by n+ 1 edges
coloured with distinct colours. Then H is said to be a (combinatorial ) handle in
(G, c) if any two edges of H are members of a bicoloured cycle of G (see [1]).

This concept generalizes the analogous one given in [7]; there the combinatorial
handle is defined as a subgraph @ of G formed by two vertices P, Q joined by n—1
edgesty,... ,t,1 with distinct colours ci,... ,C,-1 € A, such that P, Q belong
to the same {1, j }-coloured cycle C of G, where {i,j} = A, — {c1,... ,Ca1 }. If
tn (TeSp. t4+1) is the i-coloured (resp. j-coloured) edge of C containing P (resp.
Q) as its vertex, then the sub-graph of G induced by the edge set {t,/r € N1}
is a special case of a combinatorial handle as defined in the present paper.

The graph (G, ©) obtained from (G, c) by cutting the handle H is defined by
V(®) = V(G) and E(G) = E(G) — E(H). Obviously (G,?) is an (n+ 1)-
coloured graph with boundary. If K (G) is the disjoint union of two triangulated
(n— 1)-spheres T}, T» , then T}, T have exactly n+ 1 (n— 1)-simplexes each.
This condition is always verified whenever (G, c) represents a closed »-manifold,
n > 3, (see [1], p. 81) so that throughout the paper, we will be interested in this
case. Let ag,...,a,, r < m, (resp. bo,...,bs, s < m) be the boundary vertices
of G representing all the n-simplexes of K (G) that have at least an (n— 1)-face
in T3 (resp. T»). Then the graph (é,‘c‘) obtained from (G, c) by cancelling the
handle H is the (n+ 1)-coloured graph defined by the following rules:

() V(&) =V(G)U{X,Y}, where X,Y ¢ V(G);

(2) two vertices u,v € V(G) are joined by an i-coloured edge if and only if
u, v were joined in G by such an edge;

(3) there is an i-coloured edge e; (resp. f;), i € A,, joining a; (resp. b;) with
X (resp. Y') for each i-coloured free edge incident to a; (resp. b;).

The following Proposition 1 and Proposition 2 proved in [1] show the topolog-
ical meaning of the above graph moves.

Proposition 1. Let(G,c) bean(n+1)-coloured graph representing the n-sphere
S™ and let H be a handle in G. Then the graph (G, <) has two connected compo-
nents both representing the n-sphere S™.
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Proposition 2. Let M be a closed n-manifold, (G, c) be an (n+ 1) -coloured
graph representing M and H a handle in G. Then we have

) Ir E( H) is not a coboundary, then M is homeomorphzc fo the connected
sum M # (S ® S'), where M = |K(G)|.

(2) IfE(H) is a coboundary, then (G ¢) has two connected components rep-
resenting two n-manifolds M, 1, M2 such that M ~ M, 1 # Mz

Given an (n + 1)-coloured graph (G, c), let D be a subgraph of G formed
by two vertices u, v joined by h edges (h € N,) coloured by distinct colours
€1,€2,...,¢h € Ap. If wesetT = A, — {c1,¢c2,...,c4}, then D will be called a
dipole of type h if u, v belong to distinct components of Gr (see [2]). The (n+ 1)-
coloured graph (G, ¢) obtained from (G, c) by cancelling a dipole D is defined
by the following rules: (1') delete u,v from G; (2') paste together the pairs of
free edges (the ones which had an end-point in the deleted vertices) with the same
colour.

In [2] the following proposition is proved:

Proposition 3. Let M be a closed n-manifold, (G, c) an(n+ 1) -coloured graph
representing M and D a dipole in G. Then the graph (G',c') also represents M .

4. Regular crystallizations.

Now we recall some definitions given in [20] for a closed 3-manifold M3. A
crystallization (G, c) of M? is said to be a strong frameof M if G has no multiple
edges (that is, G is simple) and any {4, j }-coloured cycle C;; and {4, h}-coloured
cycle C;y of G meet at most one edge for {1, j, h} C As.

Actually the original definition of strong frame is stated in terms of “minimal
ball coverings” of 3-manifolds (see [20]); the equivalence of the two definitions
in an easy exercise.

The main result of [20], stated with our notation, is the following

Proposition 4. Let M3 be a closed non-trivial handle free 3-manifold. Then
there exists a strong frame (G, c) representing M.

As a direct consequence of Proposition 4, Y. Tsukui stated in [20] the following
conjecture: there is no strong frame which represents the 3-sphere S° .

Now we introduce regular crystallizations for closed n-manifolds which par-
tially extend strong frames to dimension n. Indeed the concepts of regular crys-
tallization and strong frame coincide in dimension 3. However, there exists a
regular crystallization of S2 x S? which still has multiple edges (see [3], Figure
6). Regular crystallizations are proved to exist for any closed non-trivial handle
free n-manifold (see Proposition 5). Our techniques are completely different from
the ones used in [20] so that Proposition 5 also gives an alternative simple proof
of the main theorem of [20] (Proposition 6).
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Definition 1: Let M™ be a closed n-manifold and let (G, c) be a crystallization
of M. Then (G, c) is said to be a regular crystallization of M if G satisfies the
following properties:
(1) G has neither dipoles nor handles whose edge-sets are not coboundaries;
(2) no two edges of the same colour belong to n— 1 distinct bicoloured cycles.

The main purpose for introducing the concept of regular crystallization is to
provide a combinatorial method to recognize the topological handle S™' ® S
among closed n-manifolds. More precisely, we try to characterize the crystalliza-
tions of S™! ® S! among coloured-graphs which represent closed n-manifolds.
Similar and partially successful attempts have been performed for the 3-sphere
by several authors (see [10], [21]). Their point of view consisted in constructing
algorithms to recognize the Heegaard diagrams of genus two of the 3-sphere.

Our approach, valid in all dimensions, seems to characterize (modulo Conjec-
tures 1, 2), instead, the topological handle S*! ® S! as the unique closed prime n-
manifold whose crystallizations should always have a degeneracy condition with
respect to the intersections of the 2-residues (see Propositions 5 and 8). Indeed
it seems true (but it is an open question) that S™! ® 8! does not admit a regu-
lar crystallization (compare also [15], Section 4). This leads to an algorithm for
recognizing (modulo Conjectures 1,2) S*! ® S' among closed n-manifolds as
follows. Let M be a closed prime non-trivial n-manifold which has no regular
crystallizations. Then the procedure of regularization, described in Proposition 5
below, does not completely work for an arbitrary crystallization of M. Thus we
must obtain a new crystallization of M containing a combinatorial handle whose
edge-set is not a coboundary. Now Proposition 2, Section 1 implies that M is
homeomorphic to $™! ® S.

Further applications to standard spines of 3-manifolds will appear in a future
paper.

Proposition 5. Let M™ be a closed non-trivial handle free n-manifold. Then
there exists a regular crystallization (G, c) which represents M.

Proof: We may suppose that M is prime because the general case is easily ob-
tained by using suitable connected sums (see also [20]). By abuse of language, we
will call by the same name each part of a graph which is left unchanged by graphi-
cal moves considered in this and all subsequent proofs. Let (G1?, c{V) be acrys-
tallization of M. Since M is a non-trivial handle free n-manifold, the graph GV

will be assumed without dipoles and handles whose edge-sets are not cobound-
aries. If GV is not regular, then there exist two i-coloured edges e, f € E( G’;l)) ,
for some i, j € A, (i # j), which belong to the same {4, h}-coloured cycle of
GO for every h € A, — {4,7}. We may assume thati = 0 and j = n without
loss of generality. Let Co, (b € N,-1) be the {0, h}-coloured cycle of Gg)
containing the edges e, f. By x5 € Cos We denote the h-coloured edge adjacent

37



toe. Let H'" be the subgraph of G induced by the n edges f,z1, 0., Tny

coloured by the colours 0,1,... ,n— 1, respectively. Since any two edges of
H are members of a bicoloured cycle of G, the subgraph FD is a handle in
the n-coloured graph (GY”, c{), where &{V: E(G{) = (c0)-1(A, ;) —
A1 C Ay, is the restriction of ¢V to E(GY"). Further G£? is the unique A,,_; -
residue of G which corresponds to the vertex v, of the contracted triangulation
KM = K(G™) of M. By construction, the pseudo-complex K(G{) is ab-
stractly isomorphic to the disjoined star std(v,, K V) so that G represents the
(n—1)-sphere §™! o d|std(va, K)|. By Proposition 1, the graph (G5, &)

obtained from (GLY, c{”) by cancelling the handle ‘" has two connected com-
ponents (G1,¢1), (Ga,c;) both representing S™!. Let us consider the edges
e, f,zy (h € N,_1) as directed edges so that e(0), f(0) (resp. e(1), f(1)) be-
long to the same component of Gy, — {e, £} in G and e(1) = z4(0) for every
h € Ny (see Figure 1).

By construction, we have V(&) = V(G§") U{X, Y} = V(@) u{X, Y},
where X,V ¢ V(G"). If we set E' = B(G™) — {f,z4/h € N,_; }, then
the subgraph (V(G™), E) of (G{"c{") is left unchanged in (G{", &Y). Let
u,v € V(GV) be two vertices which are no end-points of the edges e, f,zs
(h € N,_1). Then u, v are joined in 5&1) by an i-coloured edge (i € N,_,) if
and only if u, v were joined in Gg) by such an edge. There is an h-coloured edge
vn € E(GLP) (resp. z3), h € N,,_1 , joining z,(1) (tesp. z4(0) = e( 1)) with X
(resp. ). There are two 0 -coloured edges yo, zo joining f(1) with X and f(0)
with Y, respectively (see Figure 2).

Let (G@, ) be the (n+ 1)-coloured graph obtained from (GP D) by
the following rules:

M V(G?) =V(GM)u{X,v}

@ (G2 = (G, &),

(3) Letu,v € V(G®) be two arbitrary vertices which are no endpoints of the
edgesee, f, zi (h € No_1). Then u, v are joined in G by an n-coloured
edge if and only if u, v were joined in GV by such an edge;

(4) put an n-coloured edge a, between X and Y.

Since G = GX" has two connected components (G1, c1), (G2, c2) with X €
V(G1) and Y € V(G,), the n-coloured edge a, induces a dipole of type 1
between the vertices X, ¥ in G*?. By cancelling such a dipole from G we get
the initial crystallization (G'V, ¢V). Thus (G@,¢®) is an (n + 1)-coloured
graph (non contracted) representing M, that is, |K (G®)| ~ |K(GV)| ~ M.
Since M is a prime handle free n-manifold, the subgraph D@, formed by the
two vertices e(1),Y joined by the n— 1 edges z1, ... »Zn—1, i8 a dipole of type
n—1in G?. By cancelling D'? from G'® we get a new (n+ 1)-coloured graph
(G ,c™®) which represents M. The sequence of the above moves which
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Figure 1
The handle H(! in the n-coloured subgraph G3".
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Figure 2

Graphical moves taking the graph GV into G(® .
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takes the graph (G, D) to (G, ¢®) can be resumed as follows: the graph
(G®, ) is obtained from (G, cV) by cancelling the edges e, f and joining
the vertex f(1) (resp. £(0)) withe(1) (resp. e(0)) by a0 -coloured edge ao (resp.
bo). Obviously G$> consists of two connected components, (G3,¢3), (Ga,ca),
since so does G . By the connectedness of G, there exists an n-coloured edge
b, joining the components G3 and G4. Such an edge b,, induces a dipole D® of
type 1in (G®, ). Let (G, ) be the (n+ 1)-coloured graph obtained
from (G, c®) by cancelling the dipole D'®. Then we have |K( G| ~
M and # V(G@) = # V(GV) — 2. By successively cancelling every other
dipole (if there is any) from (G‘¥, c¥) we get anew crystallization (GO, )
of M with # V(G®) < # V(GV) — 2. If G is regular, then the proof is
completed. Otherwise we repeat the above constructions by replacing GO with
G'9 . Going on like this, we can easily obtain a final crystallization (G, c) of M
which is regular. The sequence of moves must end because # V(G) > 2 for each
crystallization of a non-trivial n-manifold M. 1

Now we give three immediate applications of Proposition 5 to minimum crys-
tallizations, the Heegaard genus of a closed 3-manifold and the Tsukui conjecture.
(/): By definition, a minimum crystallization of an n-manifold M is a crystal-
lization which has the smallest possible number of vertices among all the crys-
tallizations representing the same manifold M (see [13], [14]). Some properties
of minimum crystallizations were studied by S. Lins and A. Mandel in the above
quoted papers. As a direct consequence of Proposition 5, the following proposi-
tion is easily proved:

Proposition 6. Each minimum crystallization of a closed non-trivial handle free
n-manifold is regular.

(/)): A Heegaard splitting of an orientable closed 3-manifold M 3 is a closed (con-
nected) orientable surface F' imbedded in M and dividing M into two handle-
bodies. The genus of the Heegaard splitting is the genus of F' and the Heegaard
genus of M, written h( M), is the smallest integer h such that M has a Heegaard
splitting of genus h. The proof of Proposition 5 directly implies the following

Proposition 7. Let M* be a closed orientable non-trivial handle free 3-manifold
with Heegaard genus h( M) . Then there exists a regular crystallization (G, c) of
M with the property # Gio,1y = # G23) = h(M) + 1.

(///): Now we construct a regular crystallization of the 3-sphere S? which repre-
sents a counter-example to the cited conjecture of Y. Tsukui. In Figure 3 we show
a Heegaard diagram of S* obtained from the one given in [16] by using suitable
Singer-Reidemeister moves on Heegaard diagrams.

Let (G, c) be the 4-coloured (non contracted) graph representing S* and di-
rectly constructed from the above Heegaard diagram by using the procedure de-
scribed in [6] (see Figure 4).

41



An application of the graphical moves involved in the proof of Proposition 5
takes (G, c) into a regular crystallization of §3 (see Figure 5 and Figure 6).

Thus the Conjecture 5.4 of [20] is false.

Our counterexample shows that in the 3-dimensional case the assumption “non-
trivial” in Proposition 5 is not necessary. We do not know whether the same is
true for arbitrary dimension. Thus it seems natural to state the following

Conjecture 1. The n-sphere S™ admits a regular crystallization.

5. Pseudo-handles in graphs.

In this section we give a further application of the concept of regular crystalliza-
tion to combinatorial handles in graphs. The purpose is to find simpler crystalliza-
tions of a manifold by using a sequence of graphical moves which do not change
the manifold. Thus the study of the topological structure of a manifold can be
performed by simply considering these simplified crystallizations.

Given an (n+ 1)-coloured graph (G, c), let Q be a subgraph of G induced by
n+ 1 edgeseo,eq,... e, coloured0,1,... , m, respectively.

Definition 2: With the above notation, Q is said to be a (combinatorial ) pseudo-
handle in (G, c) if there exist two distinct colours 1,j € A, such that the sub-
graphs Q — e;, Q — e; are handles in G;, G, respectively.

Obviously handles in graphs are pseudo-handles but the converse is generally
false, because an {1, j }-coloured cycle containing e; and e; might not exist in G.
If the pseudo-handle Q is not a handle, then K (Q) C K(G) is a combinatorial
(n—1)-disk which has n+ 1 (n— 1) -simplexes. Further K(Q) and K(G) have
the same vertex set. The boundary 9 K ( Q) is the simplest contracted triangulation
of the (n — 2)-sphere, obtained by pairwise identifying the (n — 3)-faces of two
(n— 2)-simplexes.

By using Proposition 5, we can prove the following

Proposition 8. Let M™ be a closed non-trivial handle free n-manifold. Then
there exists a regular crystallization of M without pseudo-handles.

Proof: Let (U, u() be a regular crystallization of M. Let us suppose that UV
has a pseudo-handle. Then there exists a subgraph Q" of ") induced by n+ 1
edges e, e1,... e, coloured by 0,1, ... ,n, respectively, such that QD — ¢;,
QY — e; are handles in U.‘.( D U;” for two distinct colours 4,7 € A,. We may
assume that i = n— 1 and j = n without loss of generality. Thus the subgraph
QY —ey, is a handle in the n-coloured graph (USP, ul"), where uld: B( UV =
(uD) 7 (An1) — Any C A, s the restriction of u(? to E(ULY). Moreover
U;" is the unique A,,_; -residue of U which corresponds to the vertex v, of the
contracted triangulation K¢ = K(U) of M. By construction, the pseudo-
complex K (U{") is abstractly isomorphic to the disjoined star std(v,, K1) so
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Figure 3
A Heegaard diagram of the 3-sphere S>.
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A non contracted 4-coloured graph representing the 3-sphere 3.
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A (non regular) crystallization of the 3-sphere S3.
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A regular crystallization (that is, strong frame) of the 3-sphere S3.
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that U represents the (n— 1)-sphere S™ =~ d|std(va, K (M)]. By Proposition
1, the graph (T$”, 7$) obtained from (US", uS") by cancelling the handle Q"
has two connected components (Ui, u1), (Uz,u2), both representing S~ If
V() = v(UE?) u{X,Y} = V(UD) U{X,Y?}, then we take X € V(U1)
andY € V(Uz). Let now (U@, u(?) be the (n+ 1)-coloured graph obtained
from (["j;(.l) , ?Igl)) by the following rules:

) V(U®) = v(T"), BUP) = ETP):;

(2) two arbitrary vertices u,v € V(U?) — {X,Y'} are joined in U® by an
n-coloured edge if and only if u, v were joined in U‘? by such an edge;

(3) put an n-coloured edge f, between X andY'.

Since the subgraph U{® = T{" has the components Uy, U, the n-coloured
edge f, induces a dipole of type 1 between the vertices X, Y in U®. By can-
celling such a dipole from U‘® we get the initial crystallization (UM,
Thus (U®, u(®) is an (n+ 1)-coloured graph (non contracted) representing M.
Since the graph (U?, (1) has no handles, there is no {n— 1,n}-coloured cycle
in U® containing f, and e,. However the {n — 1,n}-coloured cycle of U‘?,
which contains e,, must join U; and Uz. Thus there exists an n-coloured edge
gn joining Uy and U, which is different from e, and f,,. By cancelling the dipole
of type 1 induced by g, we get a new crystallization (U, u®) of M such
that # V(U®) = # V(UD). Now the graph U is not regular because the
edges e, f,, belong to the same {n, i}-coloured cycle of U® forevery i € A, 2.
Then we can apply Proposition 5 to obtain a crystallization (U, u‘®) of M with
# V(U@ < # V(UD) —2. U™ does not satisfy the statement, we repeat
our constructions by replacing U by U¥. Going on like this, we can obtain a
final regular crystallization (G, ¢) of M without pseudo-handles. Ir fact the se-
quence of moves must be finite because # V(G) > 2 for each crystallization of
a non-trivial n-manifold M. [ |

As a corollary of Proposition 8, we have the following

Proposition 9. Let M 3 be a closed non-trivial handle free 3-manifold. Then
there exists a strong frame without pseudo-handles which represents M.

The regular crystallization of the 3-sphere, shown in Figure 6, has no pseudo-
handles. Thus it seems natural to state the following

Conjecture 2. The n-sphere admits a regular crystallization without pseudo-
handles.
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