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Abstract. Let G be a p-vertex graph which is rooted at . Informally, the rotation
number h(G, z) is the smallest number of edges in a p-vertex graph F' such that, for
every vertex y of F, there is a copy of G in F with z at y. In this article, we consider
rotation numbsers for the generalised star graph consisting of k paths of length , all of
which have a common endventex, rooted at a vertex adjacent to the centre. In particular,
if k = 3 we determine the rotation numbers to within 1 ,2 or 3 depending on the residue
of nmodulo 6.

1. Introduction

A rooted graph is an ordered pair (G, z) where G is a simple undirected graph
and z is a vertex of G called the root. Let (G, z) and (F,y) be rooted graphs.
We say, informally, that (G, z) is a rooted subgraph of ( F,y) if there is a copy
of G in F with z at y. Formally, (G, ) is a rooted subgraph of (F,y) if there
exists a 1-1 function f : V(G) — V(F) that satisfies

(1) [u,v] € B(G) = [f(u), f(v)] € E(F)
2 f(z)=y

This property is denoted by (G, 1) < (F,y). If (G,z) < (F,y) for every
y € V(F), we say (G, z) is a homogeneous rooted subgraph of F and write
(G,z) < F. The rotation number h(G, z) of the p-vertex rooted graph (G, )
is defined to be the smallest number g(F) of edges in a p-vertex graph F' such
that (G, z) < F. The graph F is called an extremal (G, z) graph.

These concepts were first defined by Cockayne and Lorimer [4]. Rotation num-
bers and extremal graphs have been calculated for complete bipartite graphs [1],
[4], unions of two circuits [2], [5], lollipop graphs [7], unions of two complete
graphs [6] and the union of two stars [3].

Rotation numbers of certain rooted trees are related to the minimum number of
edges in minimal broadcast graphs , which model networks which allow optimal
information dissemination from an arbitrary node (see [4]).

In this paper we begin the study of rotation numbers for the generalised star
S(k,m) which consists of k paths of length n, all of which have one endvertex in
common (Figure 1). The root is the vertex a; adjacent to the common endvertex.
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S(k,n) :

Figure 1. The generalised star S(k, n) with root a;.

In Section 2.1 we obtain a lower bound for h(S(k,n), a1) which is attained for
k=3 andn=1,3,7. The analysis of Section 2.2 demonstrates fork =3,n=1
or5 mod 6 and n# 1,7, that the lower bound is not exact. Finally in Section
3 we establish an upper bound for the case k = 3.

Our results establish the rotation numbers for k = 3 to within 1,2 or 3 depending
on the residue of n mod 6. The exact determination remains an interesting open
problem.

2. Lower Bounds

2.1 A lower bound for h(S(k,n),a1). We begin by eastablishing a lower
bound for h(S(k,n),a;) for k > 3 and n > 1. For k = 3, this lower bound is
attained for several small values of n. We exhibit graphs to illustrate this for the
casesn= 1,3 and 7 only.

For each k > 3 and m > 1, let H(k, n) be the class of all graphs H of order
kn+ 1 such that §( H) > 2 and each vertex of H is adjacent to a vertex of degree
at least k. Since the complete graph Ky, satisfies these requirements, H(k, n)
is non-empty. Let

g=,mmin {|ECH)}

and let
G(k,m) = {G € H(k,m)||E(®)| = g}

Theorem 1. IfG is any graph inG(k,n), then

3kn—2n+3

B = g > [F—"E21).
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Proof: Let G be a graph in G(k,n) and let X (¥ respectively) be the set of all
vertices of G of degree greater (less) than k. Let

m =) (degg(z) — k).

z€X

IfY = @, let v and v be adjacent vertices of G and let G, = G — [u,v]. Since
k > 3, every vertex in G is adjacent to a vertex distinct from u and v, and hence
to a vertex of degree at least k. Also, 5(G;) > 2 and so G is in H(k,n) but has
fewer edges than G. This is impossible; therefore Y # §. Let

L= Tg{degc(y)}.

We assume that among the graphs in G(k, n), G is one for which m is minimum
and prove that m < k — £. Suppose to the contrary that m >k—2fandletvbea
vertex of G of degree £. For every z in X, let f(z) be a (fixed) neighbour of z of
degree at least k. Every z in X also has at least deg () — k neighbours distinct
from f(z) nonadjacent to v. Let

F=UZ{lz;, ]}

be edges such that z; € X,y; # f(z;) and y; is nonadjacent to v, and such that
G — F has no vertices of degree greater then k. Note that each z in X occurs
deg () — k times as an endvertex of an edgein F. Let

G2 = (G — Ul =, v1)) + UL, v]).

Then degg, (v) = k, deg g, (3:) = degq(y:) and k < degg, () < degq(z;).
Therefore every vertex in G, is adjacent to a vertex of degree at least k, and since
|E(G2)| = g, it follows that G, € G(k,n). However, if X, is the set of all
vertices of G of degree greater than k, then X, C X and, sincek — £ > 1,

> (degg,(z) — k) < m,

z€X2

contradicting the choice of G. Hence m < k — £.

Let Z be the set of vertices of G of degree at least k and suppose | Z| < n. Then
8(Z) > 1, where (Z) denotes the subgraph (of G) induced by Z. Hence at most
(k — 1)(n— 1) + m edges join vertices of Z to vertices of Y. But

(k=D(n—D+m<(k—D(n=1D+k—2-1
=(k—1)n-2¢
<(k-1)n-2 since £ > 2,
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and
Y] > (k—1Dn+2.

Therefore not every vertex in Y’ is adjacent to a vertex in Z, contradicting the
fact that G € H(k,n). Consequently |Z] > n. In fact, it is evident from the
above inequalities that |Z| > n+ 1 if m = 0. It follows that
Hk(n+ ) +2k—1n)  ifm=0
%(k’n+ m+2k—Dn+2) ifm>1

2%(3kn—2n+ 3) sincek > 3. 11

|E<G)|z{

Corollary. Foranyk >3 andn> 1,

3kn+3 -2

h(S(k,m),01) 2 [———1.

Proof: Let F be an extremal (S(k,n),a;) graph. Then F' € H(k, n) and there-
fore by Theorem 1,

3kn+3 —2n

B(P)| > [~

1.0

Graphs for which this lower bound is attained for k = 3 are depicted in Figure
2.

2.2 The lower bound for A(S(3,n),a;) forn=1o0r5 mod 6.

In the rest of the paper, we shall only be concerned with the case k = 3 and
will establish that there are infinitely many values of n for which the lower bound
of Section 2.1 may not be attained. More specifically, the following sequence of
lemmas will show that for n = 1 or 5 mod 6 the rotation number is strictly
greater than the lower bound of 57—"2131 unless » = 1 or7 (in which cases the
bound is attained by the graph of Figure 2). Throughout this section F' will denote
a supposed (3n+ 1)-vertex graph, wheren=1or5 mod 6,n # 1,7, which
has 3. edges and satisfies (S(3,7),a1) < F.

For any copy of S(3,m) in F, the vertex of F corresponding to the vertex c.of
S(3,n) will be called the centre of the copy and the three paths of length n in
the copy will be termed roads. The endvertices of the three roads (other than the
centre) will be called terminals.

In what follows the impossibility of various situations will be shown by proving
the existence of at least four terminals. The details will sometimes be omitted
for brevity and the argument merely referred to as 4TA (meaning a four terminal
argument).
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Figure 2. Graphs for which h(S(3,n),a1) = [ 7"T*3] .

Lemma 1. F has exactlyn+ 1 vertices of degree 3 and 2 n vertices of degree 2.

Proof: Since (S(3,m),a1) < F,8(F) > 2 and every vertex is adjacent to a
vertex of degree at least three. Suppose there are ¢,T and (3n+ 1 —t — T)
vertices whose degrees are three, greater that three and two respectively. Further,
let X be the degree sum of the T" "large degree vertices". Adding degrees we have

3t+2(3n+1—-t-T)+ X =7n+3

and
3t+2(3n+ 1 —-t—-T)+4T < Tn+ 3.
Therefore
t—2T+X=mn+1 1)
and
t+2T < n+ 1. 2)

Since each vertex of degree at least three is adjacent to another of this type, the
number of edges from these vertices to the degree two vertices is at most (X —
T) + 2t. The degree two vertices are dominated by the rest, hence

2-T+2t>3n+1-T-1.
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Therefore
X >3n+1-3t. 3)

From (1) and (3),
n+1—-t+2T >3n+1-3¢

ie.
t+T >n. 4)

The only values of (¢, T) satisfying (2) and (4) are (n+1,0),(n,0) and(n—1,1).

The second solution implies an odd number of vertices of odd degree. If ¢ =
n—1and T = 1, a simple degree count shows that the one large degree vertex
has degree four. Let A be the set of n vertices of degree at least three. At most
3+ 2(n—1) = 2n+ 1 edges join vertices in A to the degree two vertices and
these are all required, since there are exactly 2n+ 1 degree two vertices. Hence,
(A) is regular of degree one, which is impossible, since nis odd. I

We denote by B, L the set of n+ 1 degree three vertices and the set of 2 ndegree
two vertices respectively whose existence is asserted by Lemma 1. Elements of
B and L will be called b-vertices and £-vertices respectively. We note that each
vertex of F is adjacent to at least one b-vertex. There are at most two vertices of
degree two in (B) (otherwise there would be at most (n — 2)2+ 3 = 2n—1
edges available to dominate L) and the other vertices in (B) have degree one.
Hence by parity there are 0 or 2 degree 2 vertices in (B) and, more specifically,
(B) = mP,2P3 UmP, or P4 UmP, forsomem > 0.

Lemma 2. There is no graph F with (B) = 2P; UmbP;.

Proof: Suppose, to the contrary, that (B) = 2 P3 U mP, for some m > 0. Let
U={u,---,us}and V = {v1,--- ,vg} be the vertex subsets of the two copies
of P; in (B) and the degree two neighbours of these vertices (see Figure 3). The
remainder of (B) is mP, where m > 0 and we denote by W;,i = 1--- ,m the
vertex subset of the ith P in {B) together with the four degree two neighbours of
these vertices.

The edges of F missing in Figure 3 join pairs of vertices which appear to have
degree one in the figure. By considering various b-vertices as the centre of a copy
of S(3, n) in F, itis easy to see that each missing edge joins vertices from distinct
sets in {U, V,W1,--- ,Wn}.

Consider the copy of S(3, n) in F with centre at u; . Without loss of generality,
the initial vertices of the three roads may be taken as R : vy, u¢, 2 © u1,uz,uq
and R3 : u1,u3,u7. Therefore us and ug are terminals.

No matter how these roads enter and leave V, there is at least one terminal in
V. The four terminal argument (4TA) then asserts that any road which enters a set
W;, uses precisely three vertices of W;—one vertex of degree three and its two
neighbours of degree two (otherwise a fourth terminal is created in W;). Moreover,
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V2 Y1 Y3
Figure 3. The case (B) = 2P3 UmP;.

without losing generality, the third terminal is v, or v4 (otherwise a fourth terminal
would be created in V).

Suppose that the third terminal is v;. Then by 4TA, some road terminates in
vev1. If vgv; € Ry, then R; — {u} contains one vertex of U, two of V and 3q
other vertices for some ¢ > 0. Hencen=0 mod 3, contrary to hypothesis. If
vev1 (without losing generality) is in R, then it is easy to show that the number
of vertices on R, and Rj3 have different residues mod 3 which is impossible.

If the third terminal is v4, then by 4TA, the road ending there either contains
no other vertex of V, or it contains the subpath Q; = wvsvyv;vg or the subpath
Q2 = vyvzvg. If Ry terminates at v4 and contains Q;, thenn = 0 mod 3. If
R, terminates at V4 and contains Q; or no vertex of V other than vy, one may
show that the number of vertices on R, andR3 have difference residues mod 3,
a contradiction. If (say) R, terminates at v, and contains Q, or no vertex of V
other than v4, thenn=0 mod 3. Finally, if R, contains Q1. then is once again
easy to see that the number of vertices on R; and R3 have different residues
mod 3. 1

From Lemma 2 we know that (B) = mP, or P, U mP,. Form a graph F*
from F as follows: If (B) = m P,, delete all edges of (B) to form F*. If (B) =
Py UmP,, delete all edges of (B) except the single edge of (B) which connects
the two vertices of degree two in (B). In each case the resulting graph F* is
regular of degree two.

Lemma 3. Suppose that F* has t; cycles of length congruent toi mod 3 for
1=0,1,2. Then

@t<1
®) t2<2
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(c) eithert; ort, is zero.

Proof: All parts of this proof rely on the facts that the b-vertices of any cycle of
F* form a dominating set of the cycle and that the domination number of Uj_, Cy,

3
where 3 kj = ), is at least [$].
j=

(a) Supposet; > 2 and F* contains cycles of length 3¢; + 1.and 3¢z + 1.
Then from the above, at least

31+ 1 3¢+ 1 3n+1—-Bqa+1) -3¢+

LI [ . ]

=(a+D+(@+D+(n—qg—q@)=n+2

vertices are required in any dominating set of F** contrary to Lemma 1.
The proofs of (b), (c) are omitted. 0

Since the b-vertices dominate any cycle C of F*, the vertex sequence of C
may be represented by a sequence of a’s, 8’s and 4’s where «, 8,7 means a b-
vertex followed by two, one or zero £-vertices respectively. This will be called
an a, B8, v-code of the cycle. For example, an «, 8, v-code of the Cyg of Figure
4 in which large and small dots represent b-vertices and £-vertices respectively, is

afacyafp.

a

Y

Figure 4. Example of «, 8, y-code

Domination considerations similar to those used in the proof of Lemma 3, also
establish the following lemma. We omit the proof.
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Lemma 4. Let J be an o, 8,~-code of C, a cycle of F*, with V(C)| = j
mod 3. Then

(a) j = 0 implies that J has only os.

(b) j = 1 implies that J has ’s and precisely one v or o ’s and precisely two
B’s.

(¢) j =2 implies thatJ has o’s and precisely one . 1

An edge of F — F* is called a chord if it is adjacent to two vertices of the
same cycle of F*, otherwise it is called a link . We shall make repeated use of the
following proposition whose proof is obvious and omitted.

Proposition 1. Suppose that a road uses a chord [y, z] of the cycle C or a link
[y,2] to or from C with z € V(C) and that z is not the centre of the copy of
S(3,n). If the neighbours of z on C are £-vertices, then one of these is a terminal
of the copy. 1

Various situations will be eliminated by this proposition and 4TA.
Lemma 5. F* has at most two cycles.

Proof: Suppose the contrary. Then by Lemma 3, F* has a cycle C; of length
congruent to 0 mod 3. Lemma 3 and the fact that there are 3n + 1 vertices,
imply that F* has a second cycle C, whose length is congruenttoOor2 mod 3.
Consider a copy of S(3,7) in F whose centre is in C;. Note that such a copy
exists since no £-vertex z of C is adjacent to a b-vertex not in Cy, and there is
acopy of S(3,m) in F with a; at z. Suppose that all three roads leave C;. By
Proposition 1 and Lemma 4, there are at least two terminals in C;. Therefore
two of the roads must eventually re-enter C; and the same two results provide a
contradiction using 4TA.

Hence at least one road stays in C; which therefore has at least n+ 4 vertices.
Similarly C, has atleast n+ 3 vertices and so F* has a cycle C; with at most n—6
vertices. Consider any copy of S(3,n) in F with centre in C;. Two roads must
enter each of C; and C, and therefore Proposition 1 and 4TA give the required
contradiction. §

Lemma 6. F* is hamiltonian.

Proof: By the above lemmas, if F* is not hamiltonian, then F* has exactly two
cycles Cy, C, where (case 1) these have lengths congruent to 0 and 1 mod 3
respectively or (case 2) both lengths are congruentto 2 mod 3.

In each case consider a copy of S(3,n) in F with centre in C;. An identical
argument to that used in Lemma 5, obtains a contradiction if three roads leave
Ci. If two roads leave by b-vertices neither of which is the centre, there are two
terminals in C, (Proposition 1). Therefore one of the roads must re-enter C; which
means that the third terminal is in C,. However, the two roads enter C, and one
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must eventually leave C, to return to Ci. At least one of the three entry or exit
vertices of these roads in C,, has £-vertex neighbours in either of the two cases
(Lemma 4). Hence, there is a fourth terminal in G —a contradiction. If exactly
one road leaves C;, then C; has at least 2n + 1 vertices and so C; has at most
n vertices. Consider a copy of S(3,7) in F with centre in C;. All three roads
must leave C,. Proposition 1 asserts the existence of at least one terminal in C,
and three in C; which is impossible.

Hence in each case, for every centre in Cj, two roads leave Cp, one of which
leaves directly from the centre. Hence C; has no chord and has at least n + 4
vertices.

Case 1: C; and C, have lengths congruentto 0 and 1 mod 3 respectively.

Since C; has no chord and for each centre in C; one road remains in Ci, it
follows that » = 2 mod 3. Since F is connected, C, has a b-vertex, say z,
incident with a link. Consider the copy of S(3,n) with centre z. The size of Cy
implies that at least two roads enter C; and no road which enters C; may leave
again (4TA). Since C; has no chord, each road entering C; uses 3¢ vertices of Ci
for some g. But the road from z which uses the link, has all vertices but z in C,.
Hencen=0 mod 3—a contradiction.

Case 2: C; and C, both have lengths congruentto 2 mod 3.

In this case, the above implies that neither C; nor C; has a chord. Therefore
the numbers of b-vertices in C; and C, are equal. Hence both C; and C; have
53—",_,*—11 vertices. By Lemma 4, C; (C,) has exactly one £-vertex w (w2) which
is adjacent to two b-vertices. Consider the copy of S(3,n) whose centre z, isa
b-vertex of C; whose distance on C; from w; is maximum.

One road, say R, uses the link [21,22] and has all its n non-centre vertices
in Cy. A second road, say Rz, leaving C; at y; by the link [y1,y2], has k; =
==L non-centre vertices in C; and hence the remaining &, = =L vertices in ;.
Finally the third road R3 remains in C; and has terminal adjacent to y; . Note that
the portion of R;( Ry) in C, forms a path from 2;(y;) toa neighbour of y2 (22).

By choice of centre, w; € R3 and son = 1 mod 3. Whether or not wy
is included, there is no path of n vertices in C (disjoint from R;) from 23 to a
neighbour of y,. Hence R, cannot exist and the lemma is proved. 1

The above lemma shows that if the lower bound is achieved by F', then F* is
isomorphic to C3 .1 and all edges of F' — F'* are chords of F*. By Lemma 4(b)
the afy-code of F* consists of either one «y and the rest a’s or two B’s and the
rest a’s.

Lemma 7. For any copy of S(3,n) in F, the three roads use exactly one chord
of F*.

Proof: By Proposition 1, the roads of each copy use at most three chords. If the
roads of a copy use exactly three chords, then, again by Proposition 1, the ay-
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code of F* consists of one «y and the rest ’s. In this case the roads either use
exactly one chord each or one road uses all three chords, for otherwise the lengths
of the roads have different residues mod 3. But this is only possible if n = 0
mod 3, which contradicts the fact thatn=10orn=35 mod 6.

Hence suppose the roads of a copy Q of S(3,n) use precisely two chords. Let
the vertex sequence of F* be (uo, - - - , u3,) With ug the centre of Q. We consider
two cases.

Case 1: No copy of S(3,n) in F has chords on two distinct roads.

Say the road R; of Q uses two chords of F*. Roads R, and Rj use only edges
of F* and therefore without loss of generality R; (heavy lines in Figure 5) may be
taken to have vertex sequence (1o, tm, bm—1,*** , Unr1, U2n, U2n-1,- - Ume1)
for some integer m withn+ 1 < m < 2n. Now consider the copy of S(3,n)
with centre uz,. One of its roads, say T}, uses the chord [¥24, uns1]. Since
there are only n — 2 vertices between 3, and 41, a second road T has vertex
sequence (u2s,U2n+1, - ,u3,) and the third road T3, which includes the edge
[u24,u2n-1], must use a chord [u;,u;] where i € {n+2,... ,2n— 1} and
J €{0,---,n}. This is contrary to assumption.

u

n+l

Figure 5. Road R, for Case 1 of Lemma 7

Case 2: There is a copy of S(3,m) in F with chords on distinct roads.

Without losing generality we may assume that Q is such a copy and that the
two chords are used by the roads R; and R,. Let R; have vertex sequence
(uo,u1,- - ,u,) and say R; contains the edge [uo, u3,]. Then R, has vertex
sequence either (U1, tm, Um+1,-** , Umsn1) Wherem € {n+1,... ,2n}, or
(vo, g, ug—1,--- ,ug_ns1) Where£ € {2m,--- ,3n—2}. Inthe latter case, ul+ 1
is necessarily a b-vertex of F' (and hence by Lemma 4(b), £ # 3n—2)and R; uses
achord of F* incident with u£+ 1. By considering the road R; (R, respectively)
if¢=2n€ {2n+1,--- ,3n— 3} and R, uses the chord [ug,, ug_,]), we



see thatn =0 mod 3,a contradiction. Hence £ € {2n+ 1,---,3n— 3} and
R, uses the chord [ug.1, tige1 1. Butthen the copy of S(3,n) with centre u, has a
road T containing the edge [ ug, te+1] and a chord of F* incident with u3,, which
is impossible by Lemma 4(b).

Similarly, if Ry has vertex sequence (1o, tm, Um+1,""" Umsn-1) Where m €

{n+2,---,2n}and R, uses the chord [ %msn, tm—1], weobtainn=0 mod 3
by considering the length of R;. Hence in this case, either

@ m € {n+3,---,2n}and R, uses the chord [%m+n, Un+1 1, OF

(b) m = n+ 1 and R, uses a chord [ui, u2ns1] Where i € {2n+3,---,3n}.

The only possible af~y-code in either case is two ’s and the rest a’s, where Ry
and R, contain one B-sequence each (for otherwise the roads have lengths con-
gruent to different residues modulo 3). If (a) occurs and the B-sequence on R,
is contained in (Lmsn, - -+ Usn, %0) ((Une1, Um2, <, um—1) Tespectively), then
the copy of S(3,n) with centre tim+x (u, respectively) has two roads containing
one chord each and the third road must contain a 8-sequence, which is impossible.
If (b) occurs, a similar contradiction is obtained using a copy of S(3,n) centred
at uy .1 . This completes the proof. 1

We now require a further definition.

Let the graph G have 3n+ 1 vertices and a Hamilton cycle C. Define vertex u
of G tobe (n, C)-separated if there exists a vertex v adjacent to u such that there
is a path in C from u to v of length n+ 1.

The connection between (n, C)-separation and copies of (S(3, n),ap) is ex-
plained by the following simple fact.

Proposition 1. If each vertex w of the (3n+ 1)-vertex graph G is adjacent to a
vertex u which is (n, C,) -separated for some Hamilton cycle C., then(S(3,n),a1)
<G.

Proof: Immediate from the definition. i

Note that the av-code of F* as described in Lemma 4 implies that F'* is the
unique Hamilton cycle of F.. It follows from Lemma 7 that if F achieves the lower
bound, then each b-vertex of F' is (n, F'*)-separated. We finally prove that 1 and
7 are the only values of n= 1 or 5 mod 6 for which this is possible.

Lemma 8. Each b-vertex of F is (n, F*) -separated if and only ifn=1o0r17.

Proof: By Lemma 4(b), F* has a8-code consisting of a’s and either exactly
two B’s or exactly one ~. Suppose that each b-vertex of F is (n, F*)-separated
and for b € B, let f(b) denote the other endvertex of the chord of F* incident
with b.
Case 1: There are two §’s.

The shorter path in F* from each b to f(b) contains exactly one of the 8-
sequences or else there would be two chords cutting off numbers of vertices of
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F* with different residues mod 3. This impliesn = 1 mod 3. Hence, if F*
has vertex sequence (0, - - - , 37), then without loss of generality we may take the
B-sequences at0, 1 and \, ) + 1 where 0, X are b-verticesand n+ 1 < ) < 3%‘
The possibilities for f(3n—2) are2n—3 orn—2. Suppose f(3n—2) = 2n—3.
Then since the shorter (27 — 3,3n — 2)-path on F* contains a 8, we have
2n—3 < 22l je.n< 7. Henceforn> 7, f(3n—2) = n—2. The candidates
for f(2n — 1) are 3nand n— 2. The former is impossible since the path from
2n—1 to 3ncontains no 3. Therefore, f(2n—1)= f(3n—2) =n—2,acon-
tradiction, which shows that Case 1 is impossible for n > 7. It is also impossible
ifn=75since5 #1 mod 3.
Case 2: There is exactly one 7.

Itis not possible for the shorter path in 7* from each b to f(b) winclude the ~ if
n > 3. Hence for each chord the path must exclude the . Therefore if 3nand 0
are the adjacent b-vertices, then f(0) = f(2n+2) = n+ 1, which is impossible.

Cases 1 and 2 have eliminated all values of n=1o0or5 mod 6 except1and 7.
Figure 2 shows that for these values each b-vertex of F has the (n, F*)-separation
property. §

The above sequence of lemmas and the graphs of Figure 2 have proved:

Theorem 2.
@ Ifn=1o0r5 mod 6 andn¢ {1,7}, then h(5(3,m),a,) > =2
() Ifne {1,3,7}, thenh(S(3,m),a;) = C22

3. Upper bound for the rotation number of (S(3,m),a;)

One further observation is required to establish the upper bound of two or three
edges more than the lower bound. Let [v; , v2] be an edge of the Hamilton cycle
C of the graph G of order p and let A = {uo,uy,---, ug+1} be a set (in order) of
sequential vertices of C distinct from v; and v, . Suppose G contains the edges
[v1,u1], [v2, u,] and [ug, ugsq]. Then the cycle C* obtained from C by delet-
ing the edges [uo, 4], [uk, uk+1] and [v1,v2] and adding the edges [v;, u;],
[v2,u;] and [uo, ug+1] is also a Hamilton cycle of G (see Figure 6).

Suppose that two vertices of V(&) — A are joined by a path of length ¢ in C
which includes the edge [v;,v2]. Then it is clear that these vertices are joined by
apath of length ¢ + k and a path of lengthp — t — k in C*.

Theorem 3. Foranyn> 2,

[T32]1+3 ifn=3 mod 6
(123142  otherwise.

h(S(3,m)a1) S{

Proof: Technical details depend on the residue class of » modulo 6 . We give the
proof for n= 6 ¢ + 1, the other cases being similar, except that in the case where
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Figure 6. Two Hamilton cycles of G

n= 6g+3, this method yields an upper bound of three more than the lower bound.
LetC beacycle of order p = 3n+1 with vertex sequence (0, 1, - - - , 3m). Various
edges will be added to C forming a graph F* with the desired properties.

Firstly, add the sets {[3i,3i+n+ 1] :i=0,--- ,g— 1} and {[33+2,3i+
n+3]:i=3gq,---,4¢q— 1}. So far each vertex of

X = {p—(3q+l),p_3qy )0)"' ,39—3,39‘—2}U{6q+1;6q+2, ,12q}

is adjacent to an (n, C)-separated vertex and it remains to consider the setY =
YiUY;, whereY; = {3¢—1,3¢,---,6q}andY; = {12¢+1,12¢+2,---, 15¢+
2}.

Now add the set of edges E = {[3¢ + 3j,12¢+2+351:j =0,---,¢}.
Observe that each vertex of Y is adjacent to an endvertex of E and the endvertices
of any edge in E are joined by a path of length 9 g+ 2 in C which includes the edge
[0, 1]. Apply the observation preceding this proof with v, = 0,1, =1,up=n=
6q + 1 and ugs1 = 9¢ + 2. Two extra edges, namely the edges [1,9¢ + 1] and
[6g+ 1,9¢+ 2], are added to form a new Hamilton cycle C* and all endvertices
of E are (n, C*)-separated. It follows by Proposition 2 that (8(3,ma1) < F
and

h(S(3,m)a;) <3n+1+2g+qg+1+2

1
=3n+1+ i—(n+ H+2

Tn+3
=T n2 1+2.1
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