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Abstract. Given a graph G and nonnegative integer k,amap = : V(G) — {1,...,k}
is a perfect k-colouring if the subgraph induced by each colour class is perfect. The
perfect chromatic number of G is the least k for which G has a perfect k-colouring;
such an invariant is a measure of a graph’s imperfection. We study here the theory
of perfect colourings. In particular, the existence of perfect k-chromatic graphs are
shown for all k, and we draw attention to the associated extremal problem. We provide
extentions to C. Berge’s Strong Perfect Graph Conjecture, and prove the existence of
graphs with only one perfect k-colouring (up to a permutation of colours). The type of
approach taken here can be applied to studying any graph property closed under induced
subgraphs.

1. Introduction

A graph G is perfect if for each induced subgraph H of G, the chromatic num-
ber of H, x( H), is equal to the clique number of H,w( H). The property of per-
fection has received considerable attention since its introduction by Berge in the
1960’s [1]. Indeed, one of the foremost open problems is Berge’s Strong Perfect
Graph Conjecture (SPGC): “A graph G is perfect if and only if it does not contain
as an induced subgraph an odd cycle of length at least 5 or its complement.”

Much of the work has been devoted to determining whether a graph is perfect or
not. What we propose here is a measure of imperfecton. Given a graph G and non-
negative integer k, a map m that assigns to each vertex of G a ‘colour’ from the set
{1,...,k} is a perfect k-colouring of G if the subgraphs induced by each colour
class w—1(3) is perfect. The perfect chromatic number of G, x(G : perfect),
is the least nonnegative integer k for which G has a perfect k-colouring. Note
that a graph is perfect if and only if its perfect chromatic number is 1. Also, per-
fection is closed under graph complementation [22]; it follows that « is a perfect
k-colouring of G if and only if it is a perfect k-colouring of G, 50 G and G have
the same perfect chromatic number. The perfect chromatic number will be our
indicator of how far a graph is from being perfect.

The notions of a perfect k-colouring and perfect chromatic number are par-
ticular examples of P k-colourings and P chromatic numbers (see [8]). A graph
property P is a class of graphs (closed under isomorphism) that contains the empty
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graph K and the trivial graph K. A property P is called hereditary if it is closed
under induced subgraphs, i.e. whenever G € P and H is an induced subgraph of
G (written HaG), then H € P. Note that perfection is hereditary. We shall al-
ways assume that the properties under question are hereditary. Given a graph G,
a hereditary property P and a nonnegative integer k, a P k-colouring of G is a
map# : V(G) — {1,..., k} such that the subgraph induced by each colour class
n~1(4) belongs to P; the P chromatic number of G, x(G : P), is the least k
for which G has a P k-colouring. P colourings are discussed by S. Hedetniemi
[20], E. Cockayne [10] and F. Harary [17]. A detailed study of the theory of P
colourings was undertaken in [8] and to a greater extent in [7]. We propose here
to study the particular property of perfection from such a vantage point.

In general, our notation follows [2] and [3]. The graphs P,, C, and K, denote
respectively the path, cycle and complete graph on n vertices (C, is often called
a hole and its complement, C,, an antihole). The order of a graph is its number
of vertices. HaG denotes that H is an induced subgraph of G. For a fixed graph
G of order at least 2, the property of being G-free is -G = {H : G4 H}; fora
family F of graphs of order at least 2, F denotes the property (\{—G : G € F}.
Throughout we often omit the property P in the notation when P = — K, since
the generalized chromatic notions coincide then with the standard ones.

We remark that Hell and Roberts [19] have defined a different measure of im-
perfection.

2 Examples of Perfect k-Chromatic Graphs

Any perfect graph is perfect 1-chromatic. The odd cycles of length at least 5
and their complements are examples of perfect 2-chromatic graphs, since they are
imperfect but the removal of any vertex leaves a perfect graph. The existence of
perfect k-chromatic graphs for all k > 1 is not entirely obvious; we present a few
methods for constructing such graphs.

2.1 Via Triangle-free Graphs

Theorem 2.1. Let G be a triangle-free graph. Then x(G : perfect) = [2429].

Proof: Letw: V(G) — {1,...,x(G)} be a x(@)-colouring of G (in the usual
sense). Then as every bipartite graph is perfect, we see that ' : V(G) —
{1,...,[X27}, where 7'(u) = [%21, is a perfect [ ] colouring of G. Thus
x(G : perfect) < [X2]. On the other hand, if p : V(G) — {1,...,x(G :
perfect) } is a perfect x(G : perfect)-colouring, then each colour class must be
bipartite (we use the fact that G is triangle-free and that any non-bipartite graph
contains an induced odd cycle). Thus by colouring each colour class with two new
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colours, we geta 2x(G : perfect)-colouring of G, so that 2x(G : perfect) >
x(G). 1t follows that x(G : perfect) > [ﬁzﬂ] , S0 we are done. 1

Now it is well known that there exist k-chromatic triangle-free graphs for all &,
so this, in conjunction with the theorem above, yields perfect k-chromatic graphs.
In fact, from Erdos’ theorem [11] on the existence of graphs with large girth and
chromatic number, there are perfect k-chromatic graphs of girth at least g for all
positive integers g and k.

2.2 Via the Substitution Operation

Given graphs G and H and a vertex v of G, the graph arising by substituting
H for v in G is formed from H U (G — v) by joining each vertex of H to every
neighbour of v in G. Itis known [22] that the property of perfection is closed under
substitution. Now suppose we have constructed a perfect k-chromatic graph H.
We substitute H; for every vertex but one in a graph G that is either an odd cycle
of length at least 5 or its complement. Then it follows from Theorem 2.8 of (8]
that the new graph is perfect (k + 1)-chromatic. Starting with H, = K;, we
recursively build perfect k-chromatic graphs for all k > 2. An example of such a
perfect 3-chromatic graph is shown in figure 1.

2.3 Via Ramsey Theory

Let H be a graph such that for assignment of one of k — 1 colours to the edges
of H, there is a partial monochromatic subgraph isomorphic to an odd cycle of
length at least 5 (the existence of such a graph H follows from Ramsey’s theorem
- see [15, pg. 120]). If G is the line graph of H, it is not hard to see that G is not
perfect (k — 1)-colourable, and hence contains an induced perfect k-chromatic
subgraph.

Another approach uses Erdos’ result [12] that there is a graph G, of order at
least 2% — 1 that contains no K, or K.,. Consider a perfect k-colouring m of
G... Lovasz [23] proved that a graph H is perfect if and only if for every induced
subgraph F of H, w( F)w(F) > |V(F)|. Thus if m is a perfect k-colouring of
G, then each colour class 7~ (4) has order at most (n— 1)2, so that

k
k(=12 > 3 |77 (D] = [V(Ga) 2 28 -1

1=1

It follows that x(G : perfect) > (2,3,’)1 , S0 we have graphs of arbitrary large
perfect chromatic number.

The methods mentioned above do not provide examples of perfect k-chromatic
graphs with order smaller than a constant times k%. We can, however, determine
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Figure 1

the asymptotic behaviour of f(k : perfect), the minimum order of a perfect k-
chromatic graph.

Theorem 2.2. There are positive constants C and C' such that
Cklog k < f(k: perfect) < C'klog k @)

forany k > 3.

Proof: In [18] it was started that for any graph G that is neither complete nor
totally disconnected, there are positive constants K and K’ such that

Kklogk < f(k:-G) < K'klogk (*%)

where f(k : —G) is the minimum order of a —G k-chromatic graph. Taking G
to be a fixed imperfect graph and noting that any —G k-chromatic graph is not
perfect (k — 1)-colourable, we have f(k : perfect) < f(k : —G) < K'klog k,
and thus proves the existence of the upper bound constant C'.

To prove the lower bound, we use the same type of argument as was used to
prove the lower bound of (**) in [18]. Let G be a graph of order n (n large). It is
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known (see [15], page 77) that (for large n) every graph of order n contains either
a K|_1°84ﬂJ ora K[_log,,nj . Now

[logs(n— i[log n])] > [l0g ¢ 7] (***)

provided i < 2=28¥% and for such an i, n— i[log,s n] > 16/n. Therefore, for

0g s 0| ?
large n we can recursively remove a K{iog,sn] OF @ K[iog s ) from G ﬁ’%‘;‘%’l
times since (***) holds. We colour each such clique or independent set with a
different colour, and the remaining

ne [ nog“s‘,g] [logy 7] < 16V

vertices each with a different colour. The number of colours used in this perfect
colouring is at most []"#Eﬂ + 16/n < C" 2%~ (C" apositive constant). For

B16 B
large k, we choose n = lE'T log,¢ k]. Then ML"“ < k, so any graph of order at

most n is perfect k-colourable. Thus f(k : perfect) > | 452 logs(k — 1) >
Ck log k for some positive constant C. 1

We remark that a precise calculation of f(k : perfect) appears difficult for any
k > 3. The smallest perfect 3-chromatic graph we know is shown in figure 1.

3 Vertex Perfect k-Critical Graphs and the SPGC

Many of the attacks on the SPGC have been directed at minimally imperfect
graphs, that is, those graphs that are imperfect but the removal of any vertex
leaves a perfect graph. The structure of minimally imperfect graphs has been
thoroughly investigated (see [14], for example). We now define a subclass of
perfect k-chromatic graphs that includes as a special case (k = 2) minimally im-
perfect graphs. In [8] a graph G was defined to be vertex P k-critical if G is P
k-chromatic but G — v is P (k — 1) -colourable for all vertices v of G. Hence:

Definition 3.1. If G is perfect k-chromatic but for every vertex v of G, G — v
is perfect (k — 1) -colourable, then G is called vertex perfect k-critical.

The reader can verify that the graph of figure 1 is indeed vertex perfect 3-critical.

It should be clear that any perfect k-chromatic graph contains an induced vertex
perfect k-critical subgraph. Thus the constructions of section 2 yield examples of
vertex perfect k-critical graphs. It is of interest (as it is in the standard chromatic
case [27],[291.[28]), however, to construct explicitly such graphs.

As mentioned earlier, the property of perfection is closed under substitution, and
in [8] it was shown that if P is any property closed under substitution, Hy, ..., Hy,
are vertex P k-critical graphs and G is a vertex P 2-critical graph on vertices

145



Figure 2:

Y0,V1,...,Vn, then the graph G, arising by substituting successively H; for v;
inG(i=1,...,n) is vertex P (k + 1) critical.

A second construction can be described as follows. Let F' be a k-critical graph,
ie. F is k-chromatic, but the removal of any edge or vertex leaves a (k—1)-
colourable subgraph (constructions of such graphs are plentiful; see [28],[29]).
For each edge e = zy of G, we take three disjoint copies H {.H5,and H$ of any
vertex perfect (k — 1)-critical graphs, and add in all edges between z and H iz
and H3, Hf and Hy, y and H§, and y and H (see figure 2); let this new graph
be F. In any attempt to perfect (k — 1)-colour Fj, some edge e = zy of F
has both endpoints the same colour c; as each colour must be used on each of the
vertex perfect (k — 1)-critical graphs H¢, colour class ¢ has a monochromatic
5-cycle Cs, a contradiction. Thus F} is not perfect (k — 1)-colourable. Let v be
any vertex of Fi. If v € G, thenlet 7 : V(Fy) — {1,...,k— 1} be any map
such that the restriction of 7 to G — visa (k — 1)-colouring of G — v, and the
restriction of 7 to each H)? is a perfect (k — 1)-colouring of H;; ifve H;, then
letw : V(F;) — {1,...,k— 1} be any map such that the restriction of 7 to G is
a (k — 1)-colouring of G — e (with the endpoints of e having the same colour c),
the restriction of = to each H{((f, 1) # (e, )) is a perfect (k — 1)-colouring of
H,f, and the restriction of 7 to Hf — v is a perfect (k — 2)-colouring of Hf —v
not using the colour c. In either case, each colour class of 7 arises by substituting
perfect graphs for the vertices of a forest. As any forest is perfect we see that
F — v is perfect (k — 1) -colourable for any vertex v of Fy. It follows that F} is
vertex perfect k-critical.

Let k = 3. By taking G = Cs and each H; to be an odd hole of length at least
5 in the first construction, we see that there are vertex perfect 3-critical graphs of
all odd orders greater than or equal to 31. In the second construction, by choosing
F' to be a 5-cycle, and each H{’s to be an odd hole of length at least 5, we derive
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vertex perfect 3-critical graphs of all even orders greater than or equal to 80. Thus
there are vertex perfect 3-critical graphs of all orders greater than or equal to 79. It
is not hard to see from the first construction (with G = Cs) that if there are vertex
perfect k-critical graphs of all orders > m, then there are vertex perfect (k + 1)-
critical graphs of all orders > 4 m + 1. Thus we have shown the following.

Theorem 3.1. For every k > 3, there are vertex perfect k-critical graphs of
every order > 78 -4%-3 + L (42 — 1), 1

Therefore we have a method for explicitly constructing vertex perfect k-critical
graphs of all large orders for all k > 3 (while it is easy to deduce from the result of
Lov4sz mentioned in section 2.3 that there are no vertex perfect 2-critical graphs
of order p + 1, where p is a prime). All of these contain an induced K3 and
are therefore not line graphs, so that the first construction of perfect k-chromatic
graphs via Ramsey theory in section 2.3 yields a different family of vertex perfect
k-critical graphs (other vertex perfect k-critical graphs can be found by taking
vertex (2 k — 1) -critical graphs of girth at least 4).

We now turn our attention to vertex perfect k-critical graphs and the SPGC. Let
Hole = {Can+1 : 0> 2}U{C2m1 : n>2}. Thenthe SPGCis equivalent to the
statement that the vertex perfect 2-critical graphs are precisely the vertex —Hole
2-critical graphs. Our next result states that equality in any level of the criticality
hierarchy is equivalent to the SPGC.

Theorem 3.2. The SPGC is equivalent to the statement:

There is a k > 2 such that the set of vertex perfect k-critical graphs is precisely
the set of vertex —Hole k-critical graphs.

Proof: If the SPGC fails, then there is a minimal imperfect graph G that does
not contain an induced Cape1 Of Cam1  (n > 2), 50 G € —Hole. Using the
substitution construction recursively, we construct vertex perfect k-critical graphs
Gy (k > 2) by setting G, = G and forming G}, by substituting G, for all
but one vertex of G. It is easy to verify that —Hole is closed under substitution,
so as G = G € —Hole, we see inductively that Gy € —Hole forall k > 2. In
particular, there is a graph that is vertex perfect k-critical but not vertex —Hole
k-critical for any k > 2. 1

We remark that while clearly a property P is determined by its vertex P 2-
critical graphs, in general it is not true that P is determined by its vertex P k-
critical graphs for any fixed k > 3. For example, if Q = {G : |V(G)| < 4}
and P = Q — {P4}, then the vertex P k-critical graphs are the same as the vertex
Q k-critical graphs for any k > 3, namely the set {G : |[V(G)| = 4k — 3}; the
lengthy details are omitted.
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We end this section by stating the SPGC in terms of another property. The
reader can verify that —{P;, P} = {K, : n > 0}U{K, : n> 0}. —{P3, Bs }-
colourings have been investigated in the literature under the name cocolourings
(see [21],[26],[51,(6]). In Broere and Burger’s notation [6] vertex —{Ps,P3} k-
critical graphs are called critically k-cochromatic graphs; we relate such graphs
to the SPGC.

Proposition 3.3. Let G be a minimal imperfect graph with clique number w and

independence number «. Let B = min{a,w}. Then G is critically (8 + 1) -
cochromatic. Thus the SPGC is equivalent to the statement that every minimally
imperfect graph is critically 3-cochromatic.

Proof: Suppose = : V(G) — {1,...,} were a B-cocolouring of G. Let the
order of G be n; by a theorem of Lovész [23], (see also [14, pg. 58]) n= aw + 1.
As each colour class of « is independent or complete, |n~! (1) | < max{a, w} for
alli,son= Y4, |n'(i)] < B max{a,w} = aw, a contradiction. Thus G is
not S-cocolourable.

Let v be a vertex of G; it suffices to show that G—v is 8-cocolourable. Note that
G is also minimally imperfect and 8 = min{(G) = w,w(G) = a}. Further-
more, G is critically (8 + 1)-cochromatic if and only if G is, so we may assume
B = w. G—v is perfect with clique number at most B = w,solet 7 be a B-colouring
of G — v. Then clearly  is also a cocolouring of G — v as well. |

4 Uniquely Perfect k-colourable Graphs

We now turn our attention to the existence of graphs with unique perfect k-
colourings.

Definition 4.1. A graph G is uniquely perfect k-colourable if and only if it is
perfect k-chromatic and, up to a permutation of colours, G has only one perfect
k-colouring.

This definition is a particular instance of the notion of a uniquely P k-colourable
graph [8], i.e. those graphs that are P k-chromatic and have only one P k-
colouring up to a permutation of colours. For some properties P, uniquely P
k-colourable graphs need not exist for any k£ > 2, for example, for P = {G :
[V(@)| < n} where n > 3 is fixed [8]. Another interesting example is afforded
by P = perfect N —K3. Note that perfect N — K3 = bipartite. By the proof of
Theorem 2.1, if G is (perfect N —K3) k-chromatic (& >2)thenGis (2k—1)-
chromatic or 2 k-chromatic. Since any pairing of colour classes of a 2 k-colouring
of G yields a bipartite k-colouring, we see that G is not uniquely (perfect N—K3)
k-colourableas 2k > 4.

We devote this section to proving the existence of uniquely perfect k-colourable
graphsfork > 2 (fork = 0,1 we may take K). We begin with alemma about the
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existence of certain uniquely k-colourable graphs. For a graph G and vertex v, we
denote the neighbourhood of vin Gby N(v : G) = {w € V(G) : wv € E(G)},
and the degree of v in G by deg(v : G). For a subset S of V(G), (S) denotes the
subgraph of G induced by S.

Lemma 4.1. Forall k > 2 and g > 3 there is a uniquely k-colourable graph
G with colour classes V1, ..., Vi and of girth at least g such that forall 1 < 1 <
Jj<kandall we V;UV;,

deg(w : (ViUV;)) < 37,

where € € (0, 4'—9) is fixed and n= |V;| forall i.

Proof: Let G be the set of all k-partite graphs on vertex set Vi U - - - U Vi (V)
is independent for all §) with m = | (¥)n!*¢] edges. Bollobds and Sauer [4] have
shown that (for all large n) there isa G’ C G such that

191

>1—'nf
61

and for any G € G' we can omit a set of | #*¢] independent edges to get a graph G

of girth at least g that is uniquely k-colourable. Let G be the collection of G € G

that have no vertex w in some V; such that for some j # 1, deg(w : (V; U V;)) >
3|»¢]. Then for large n

S < o) (207 ) ()

3] /(R leep \ 2L
< k(k—1n I_”f_l) (l'( ));2'|>

(sizg
< k= ( el (§)n*e] ) Ll
(3

3)nln]
<k(k—Dn(=+ 0(1))
=o0(1)
Therefore £ g — 1 asn — oo. In particular, it follows for large nthat G"NG' # 0,

so we can find a uniquely k-colourable graph of girth at least g such that for all
1<i<j<kandallw € V;UVj, deg(w: (V;UV;)) <3|nf] < 37" 1

We now prove our main result.
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Theorem 4.2. Forall k > 1there are infinitely many uniquely perfect k-colourable
graphs.

Proof: For k = 1 the result is clear as there are infinitely many perfect graphs.
We assume now k > 2. Let Gi, be a uniquely 2 k-colourable graph of order
2kn and girth at least 4, as afforded by the previous lemma, so that for all 1 <
i<j<kandallw € V;UV;, deg(w: (;UV}) < 3n. As(ViUTR) is
uniquely 2-colourable, we can pick an edge w}w} with w} € V; and w} € V5.
We recursively pick w; € V; (i = 3,...,2k) such that the subgraph of Gin
induced by {w}], w}, ..., w},} is isomorphic to K, U (2k — 2) K;. This can be
done as forany i > 3

i-1 i1
U@} : Gea) n )| = Y deg(w} : (V;Us))
j=1 j=1
<(i—-13n°
<3(2k-
<n=|y
(for nlarge), so there is aw] notjoinedtow}, ..., w} . Similarly,forl =2, ..., k

there are points w},...,w}, such that whw! is an edge of Gy, if and only if
{"t]} = {2l - 1121}°
Now we form Fy , from G by taking new points z, ..., zx and joining z; to
w{ Yoo ,wé & (see figure 3). We claim that Fy ,, is uniquely perfect k-colourable.
First we show that F} ,, is perfect k-colourable. For v € V(Fg),set

L if Vi
w(v) = { f;] . ven
1fv=z,~

that is, the colour classes of & are {z}UWVa;1UVag,i=1,... k. Let F; be the
subgraph of F; ,, generated by the i colour class of 7. Tucker [30] has shown the
validity of the SPGC for graphs containing no K4, so if F; is not perfect, then it
must contain an odd hole or antihole X ; in fact, X is an odd antihole of length at
least 7 as it is easy to verify that F; contains no odd hole of length at least 5. X
contains at most one K3 as does Fj, a contradiction since every odd antihole of
length at least 7 has more than one K3. Thus F; is perfect, and we see that = is a
perfect k-colouring of Fy ,. In fact, Fy ,, is perfect k-chromatic, since by Theorem
2.1,

X(Fn 2 perfect) > (G @ perfect) > k.

It remains to show that if p is a perfect k-colouring of Fi 5, then p arises from
w by a permutation of colours. Now the restriction p' of p to Gk, is a perfect
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Figure 3: F

k-colouring of of G s, s by the proof of Theorem 2.1, each colour class of p' is
bipartite, and hence of the form V;UV; (4 # ) by the unique 2 k-colourability
of G 5. Consider the colour class C! containing z;. It also contains V;, UV}, for
some i # L. If {li,} # {21 — 1,21}, then w}, and w}, are not adjacent in
Fy.a. Since Vi, UV, generates a uniquely 2-colourable subgraph of Gy, and
hence of F}, there is an induced path P' in V;, U V;, with an even number of
points that joins w} and w},. As w}, and wj, are nonadjacent, P' contains at least
4 points, and so z; together with P’ generates an odd hole in C*, contradicting the
fact that C! is perfect. Thus C* contains {z;} U V251 U V3, and no more, since
the restriction of C' to Gy, is of the form V; U Vj, and if z; € 1 (j # 1), then
Vaj, U Va;j C C' follows as well from the argument above, a contradiction. Thus
p has the same colour classes as .

It follows that F} , is uniquely k-colourable. As there are infinitely many graphs
G}, (for all large n), there are infinitely many uniquely perfect k-graphs Fin. 0

Note that by the remark preceding Lemma 4.1, the triangles are essential in the
construction; there do not exist uniquely perfect k-colourable graphs of girth at
leastg forany k > 2 and g > 4.
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5 Further Remarks

We conclude our discussion of perfect k-colourings with two results. First, it is
natural to inquire about the complexity of perfect k-colourability:

INPUT: A graph G.
QUESTION: Is G perfect k-colourable?

It is not known whether perfection (i.e. perfect 1-colourability) belongs to NP, and
we do not know if perfect k-colourability belongs to NP for any k (we remark that
Edmonds and Cameron [9] observed that perfection belongs to co-NP). However,
we can show that perfect k-colourability is NP-hard for k >2.

Theorem 5.1. For all fixed k > 2, perfect k-colourability is NP-hard,

Proof: We find a polynomial transformation of 2 k-colourability into perfect k-
colourabilty (the former is known to be NP-complete for all fixed k > 2, see
[13]). Let W be a fixed (2k + 1)-critical graph without any triangles, and let
e = zy be any fixed edge of W. Given a graph G, we construct a graph G’ by
taking, for every edge f = uv of G, a copy Wy of W —e, identifying one endpoint
u of f with z, removing edge f from G, and joining the other endpoint v of f
with y; (this is the repeated use of Hajos’ well known construction [16]). Itis
easy to see that G’ is 2 k-colourable if and only if G is, and that G is triangle-free.
By Theorem 2.1, G’ is 2 k-colourable if and only if it is perfect k-colourable, so
we have that G is 2 k-colourable if and only if &' is perfect k-colourable. The
construction is clearly polynomial since the order of W depends only on k (and
not on G). [ ]

Our other result of this final section asks under what conditions does there ex-
ist G-free graphs that are perfect k-colourable. The analogous problem for k-
colourability and G = C,, is Erd6s’ classic result on the existence of k-chromatic
graphs of large girth. Mynhardt and Broere [24] posed the problem of whether for
all graphs F' and G of order at least 2 with F '4G and all positive integers k there
are —G k-chromatic graphs that are F-free. They provided partial results, and
further results can be found in [7]. We determine precisely when there are F-free
perfect k-chromatic graphs.

Theorem 5.2. Let F be a graph of order at least 2. Then for all k > 1 there
exisﬂm F-free perfect k-chromatic graph if and only if F is not one of
K21K2’P3:P3)P4-

Proof: First note that as —P; C perfect [25], any vertex perfect 2-critical graph
(and hence any perfect k-chromatic graph for k > 2) contains a P,. It follows
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that if G is any one of the subgraphs K2, K2 ,P3 ,P3,Ps of P4, then for any k > 2
there is no perfect k-chromatic graph that is F-free.

Conversely, suppose F is not one of K3,K,,P3, Ps, or P;. Note that Fis
also not equal to K, Kz, Ps, Ps, or P4, so if we can find a perfect k-chromatic
graph H that is F'-free, then H is perfect k-chromatic and F-free. Since one of FF
and F is connected, we may assume F is connected. First assume that A (F) =
max{deg(v) : v € V(F)} > 3, so that F contains eithera K; 3 ora Ks. If
K34 F then by Theorem 2.1 there is a K3 -free graph, and hence an F-free graph,
that is perfect k-chromatic for all k£ > 1. On the other hand, if K; 39 F, then as
noted earlier, there are perfect k-chromatic graphs that are line graphs, and such
graphs are K 3- (and therefore F-) free.

We may now assume A (F) < 2, so as F' is connected, F' must be either a
C (I>3)orapath P, (m > 5). f F = G, then we are done by the
remark following Theorem 2.1. Finally, if F = Pn(m > 5), then note that —F is
closed under substitution. As Cs € —F, we recursively see that the vertex perfect
k-critical graphs formed from Cs via the substitution construction are all F-free,
and we are done. 1

We have illustrated how the property of perfection can be studied in relation to
the class of all graphs. Such an investigation can be carried out for any hereditary
property. For nonhereditary properties (as shown in [8]) there need not exist Q
k-chromatic graphs for all k, and the natural observation that the ) chromatic
function is nondecreasing from the class of graphs under induced subgraphs to
the natural numbers under < may fail. However, for a nonhereditary property Q,
one can form a hereditary property in much the same way that Berge formed the
hereditary property of perfection from the nonhereditary property good = {G :
x(@) = w(G)}. Namely, we form the filter of Q,

Q = {G : forall induced subgraphs H of G, H € Q}.

Observe that @ is the largest hereditary property contained in Q. The property
of perfection is precisely the filter of the property of good. Even for a simple
nonhereditary property such as Eulerian, the filter can be quite interesting, and
the analogue of the SPGC, to characterize the vertex Q k-critical graphs for small
k > 2, is an avenue to explore.
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