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Abstract

A bicover of pairs by quintuples of a v-set V is a family of 5-subsets
of V (called blocks) with the property that every pair of distinct ele-
ments from V occurs in at least two blocks. If no other such bicover
has fewer blocks, the bicover is said to be minimum, and the number
of blocks in a minimum bicover is the covering number Cy(v, 5, 2), or
simply C3(v). It is well known that C(v) > [v[(v—1)/2]/5] = Ba(v),
where [z] is the least integer not less than 2. It is shown here that if
v is odd and v # 3 mod 10, v # 9 or 15, then Cz(v) = By(v).

1 Introduction

Let V be a finite set of cardinality v. A (k,t)-cover of indez X is a family
of k-subsets of V (called blocks), with the property that every t-subset of V'
occurs in at least A of the blocks. The covering number Cx(v, k, t) is defined
to be the number of blocks in a minimum (as opposed to minimal) (k, t)-cover
of index X of V.

Forv>k>t>0,let

Ba(v,kyt) = [o[(v—1)... [(v =t + DA/(k =t +1)] ... /(k — 1)]/K].

Then the quantity By(v, k,t) is a lower bound for C»(v, k,t) (see [24]). Many
researchers have been involved in determining the covering numbers known
to date (see bibliography). Our interest here is in the case k = 5, t = 2,
A =2, v odd, v # 3(mod 10). For simplicity, let C3(v,5,2) be denoted by
Cy(v) and B;(v,5,2) be denoted by B;(v). Covers with ¢ = 2 and A = 2 are
called bicovers of pairs, or pair bicovers. For k = 5, these are then bicovers of
pairs by quintuples. It was shown in [23] that if v is an even integer greater
than or equal to six, then C3(v) = B;3(v). Unfortunately this is not true
for odd values of v. For example, C3(9) # B»(9), and C»(15) # B,(15).
However, C3(v) = B,(v) for all other odd v greater than or equal to 5, v £ 3
(mod 10).
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2 Some infinite families of bicovers

A balanced incomplete block design BIBD(v,k, ) is a pair (V, B) where V
is a v-set and B is a family of subsets, each of size k < v, where every pair
of distinct elements of V occurs in precisely A blocks. A flat of a BIBD is
a subset F of V such that every block intersects F in 0, 1, or k points. It is
well known (see [9]) that there exists a BIBD(v,5,]) for all integers v > 5
which satisfy the relations

Mv—1)=0mod 4

and
Av(v—1) =0mod 20

with the exception of v = 15 and A = 2. In particular,ifv = 1 or 5 (mod 10)
and v # 15, then there exists a BIBD(v,5,2). It is immediate that if v = 1
or 5 (mod 10), v # 15, then C3(v) = Ba(v). The quantity referred to as
“excess pair count” is useful in the following. Let C be a bicover of pairs by
quintuples of a v-set V. If C contains ¢ blocks, then the ezcess pair count

E(C) is defined by
E(C) = 10c — 2( ; ).

Lemma 2.1 Suppose that v = 10m + 7 or 10m + 9, where m is a pbsitive
integer. Then Cy(v) = By(v) if and only if there ezists a bicover C' of pairs
by quintuples of a v-set such that E(C) = 8.

Proof. The result follows from the identity
10B,(v) — 2( ‘2’ ) =8,

for such v. @]

3 Some recursive constructions for bicovers

In this section we require several other types of combinatorial configura-
tion. The definition of balanced incomplete block design (section 2) can
be extended as follows. An a-resolvable balanced incomplete block design
(o — RBIBD(v,k,])) is a BIBD(v,k,])) together with a partition of the
blocks into classes, called a-resolvable classes, which has the property that
each point of the design occurs in precisely o blocks of each class. A 1-
resolvable balanced incomplete block design is simply said to be resolvable,



and is denoted by RBIBD. Definitions of pairwise balanced design (PBD),
group divisible design (GDD) and transversal design (T'D) can be found in
[27], and incomplete transversal design (ITD) can be found in [3]. Strictly
speaking, the definitions given there are for the index A = 1. To extend these
to general index ), the requirement that the pairs which occur in precisely one
block of each of these configurations is to be replaced by the requirement that
each such pair occur in precisely A blocks. For the existence of transversal
designs, our authority is [2] unless another reference is given. Similarly, for
the existence of resolvable balanced incomplete block designs and balanced
incomplete block designs, see [13]. For group divisible designs, we use the
notation GDD(g" g3° - - - g1*, K, A) to represent such a design with n; groups
of size g1, = 1,2,...,8, whose block sizes lie in the set K, and whose index
is A. Two very important group divisible designs, namely a GDD(25, {5},2)
and a GDD(28,{5},2) were found by Hanani [9], Lemma 4.15.

Lemma 3.1 Let v = 50m + 17 or v = 50m + 47, where m > 0. Ifv # 67,
then Cy(v) = Bi(v).

Proof. Let v be such an integer. Then v = 5(10m + 3) + 2 or v = 5(10m +
9)+2. If v # 17, then there exists a transversal design TD(5,10m +3) and a
transversal design T D(5,10m + 9). By replacing each block of the transver-
sal design with two copies of itself, group divisible designs GDD((10m +

3)%,{5},2) and GDD((10m+9)°, {5},2), respectively, are created. Let {z,y}
be a pair of points which do not occur in the group divisible designs. By re-
placing each group G of the group divisible design by a BIBD(10m +5,5,2)
or a BIBD(10m+ 11,5, 2) respectively, defined on the set GU{z,y}, bicovers
of 50m + 17 and 50m + 47 points are created. (This latter operation is pos-
sible provided 10m + 3 # 13, hence the exception v = 67). Since the excess
frequency of such a cover is clearly 8, these covers are minimum covers.
This leaves only the case of v = 17. A group divisible design, GDD(3%, {5}, 2)

follows from Hanani [9], Theorem 3.11. By adjoining two new points {z,y} to
each group, then replacing the resulting blocks by two copies of themselves,
and adjoining these to the blocks of the group divisible design, a minimum
bicover of 17 points is obtained. Thus C(17) = B,(17). o

Lemma 8.2 Let m and t be integers such that 0 < t < m, m = 0 or
2 (mod 5), m # 7. Suppose there ezists a TD(6,m), or let m = 10. If
C2(2t + 1) = By(2t + 1), then C5(10m + 2t + 1) = By(10m + 2t + 1).

Proof. If m # 10, by deleting m — t points from one of the groups of the
transversal designs and inflating each point by a factor of two (using the group
divisible designs GDD(2°, {5},2) and GDD(2%,{5},2) and applying Wilson’s
fundamental theorem [27]), a group divisible design GDD((2m)®(2t)}, {5}, 2)
is obtained. If a new point is adjoined to each group, and if each resulting
block B of size 2m + 1 is replaced by a BIBD(2m + 1,5,2) on the points of



B, and if the block B of size 2t +1 is replaced by a minimum bicover of the
points of B, the resulting configuration is a minimum cover of 10m+2t+1
points which has B;(10m + 2t + 1) blocks. If m = 10, the proof is as that of
the same case in Lemma 3.2 of [23] mutatis mutandis. 0

It is worth noting that for positive m = 0 (mod 5), the TD(6,m) re-
quired in the above theorem is known to exist with the exception of m = 30,
and for positivem = 2 ( mod 5), it exists except possibly for me{2,22,42, 52},
as is shown in [2] and [26].

Lemma 3.3 Suppose that there ezists a BIBD(v,5,1) with s disjoint reso-
lution classes. Let t be an integer satisfying 0 < t < s — 1. Suppose further
that C3(2t + 1) = By(2t + 1), then Co(2v +2t +1) = By(2v + 2t +1).

Proof. Let u = v/5. Let C1,C3,...,C, be the s resolution classes, and let
£1,23,...,2: be t points not occurring in the block design. Adjoin z; to each

block of Ci,é = 1,2,...,t, and then adjoin a block B* = {z1,23,...,2¢},
and take the blocks of the class Ci4; together with Bx as the groups of
a GDD(5%t*,{5,6},1). Inflate each point by factor of two to obtain a
GDD(10%(2t)!,{5},2), say D. Let the groups of this design be Gy1,Ga2y...,Gu,Guy
where |G;| = 10, for i = 1,2,...,u, and |Guy1| = 2¢. Let oo be a point not
in D. For eachi,i =1,2,...,u, adjoin the blocks of a BIBD(11,5,2) to the
blocks of D defined on the set G; U{oo}. Then adjoin the blocks of a bicover
of Gus1 U {00} with By(2t + 1) blocks. The resulting set of blocks are the
blocks of the required bicover. (]

Lemma 3.4 Suppose there exists a BIBD(v,6,1) with a flat of order w. Let
t be any integer satisfying 0 < t < w—1. Suppose that C3(2t+1) = By(2t+1).
Then Cy(2v — 2w + 2t + 1) = By(2v — 2w + 2¢ + 1).

Proof. Let z be a distinguished point lying in the flat of the BIBD. Let
u = (v—w)/5. Replacing the blocks of the flat by a single block and deleting
z from the resulting design yields a set of groups of a GDD(5%(w—1)*,{6},1).
Deleting w — 1 — t more points of the flat then yields a GDD{5"t*,{5,6},1}
which can be inflated by a factor of two to produce a GDD(10%(2t)}, {5},2).
By proceeding as in Lemma 3.3, the required bicover is obtained. a

Lemma 3.5 Forv € {7,27,37,67},C2(v) = B;(v).

Proof. For v = 7, let V be the points {1,2,...,7}. Then the blocks of the

bicover are
12345 12567

12346 34567
12347



For v = 27, let V be the set of points {(¢,5) : 1,7 € Zg} U {X,Y}. Then
the blocks of the bicover are
(0,0) (1,0) (2,0) (3,0) (4,0)
(010) (1’0) (0’3) (0)4) (2» 4) mod (5) ")
(0, 0) (2’ 0) (0’2) (0’3) (3» 4) mod (5’ _)
(0’0) (092) (1’2) (2’2) (4» 3) mod (5’—)
(0,0) (0,1) (1,2) (3,2) (0,4) mod (5,-)
(0,0) (0,1) (1,1) (3,3) (2,4) meod (5,-)
(0,0) (1,1) (3,1) (1,3) (2,3) mod (5,—)
(0,0) (2,1) (3,1) (4,2) (4,4) mod (5,-)
(0,0) (2,1) (4,1) (2,2) (1,3) mod (5,—)
(0’2) (0)3) (1’3) (3’3) (1s4) mod (5a _)
(0’ 1) (2: 2) (0’4) (314) (4’4) mod (5’_)
X (0! 1) (4’2) (0’3) (4’ 4) mod (5’_)
Y (0) 1) (4’ 2) (I’ 3) (3’ 4) mod (5’ _)
X Y (0,0) (4,1) (4,2) mod (5,—)
X Y (0,0) (2,3) (3,4) mod (5,—)

For v = 37, let V be the set of points {(¢,7) : ¢ € Z7,j € Zs} U{X,Y}. Then
the blocks of the bicover are
(0,0) (0,1) (0,2) (0,3) (0,4) (taken twice)
(1,0) (1,1) (1,2) (1,3) (1,4) (taken twice)
X Y (4,0) (54j) (6,4/) mod (—,5),
X (0,0) (1,45) (2,25) (3,3) mod(-,5),
Y (0’0) (174j) (2’3j) (3’2j) mod (_’5)v
(2,0) (3,0) (4,5) (5,25) (6,5) mod (—,5),
(1,0) (3,0) (3,25) (6,0) (6,45) mod (—,5),
(1,0) (2»0) (3»j) (5aj) (5’4j) mod (_’5))
(1,0) (2,5) (2,25) (4,5) (4,4j) mod (-,5),
(0,0) (3,0) (3,5) (4,0) (4,3j) mod (-,5),
(0,0) (2,0) (3,45) (50) (5,35) mod (-,5),
(oa 0) (2)j) (29 4j) (6’ 3.7) (65 4.7) mod ("')5)’
(0’0) (1’ 0) (41 2.7) (5’ 4.7) (G,j) mod ("’5)1
(0’0) (l’j) (4sj) (5)j) (612j) mod ("75),
(0,0) (1,5) (4’4.7) (5,25) (6,0) mod (—,5),
The case v = 67 is more complicated to describe. Let V be the set of
points {(3,7) : 1 € Z15,j € Z,}U{z1,z2,...,27}. Since there are four mutually
orthogonal Latin squares of order 15, there is a resolvable transversal design
with groups
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(0,0) (1,0) --- (14,0) mod(—,4).

Let Co,Ch,...,C14 be the resolution classes of this transversal design. We
can suppose that Cy4 consists of the fifteen blocks

(0,0) (0,1) (0,2) (0,3) mod(15,—).



We now discard C;( and adjoin z;;; to the quadruples in the resolution
classes Cy; and Caiyq,0 < i < 6. To this set of 210 quintuples we add the
three blocks

(,0) (i+3,0) (:+6,0) (:+9,0) (i+12,0) i=0,1,2,
and the 225 blocks

(0’0) (5)0) (6’0) (5, 1) (5)2) mod (15’ _)
(0’0) (1»0) (5’0) (1131) (1,2) mod (15’_’)
(0’ 0) (11’0) (3v 1) (392) (11» 3) mod (15’ _)
(0)0) (2’0) (0’ 1) (10:2) (2’3) mod (15’ _)
(0, 0) (7$ 0) (8) 1) (513) (6) 3) mod (15’ '")
(0, 0) (2’ 0) (4) 1) (3a 3) (10) 3) mod (15, ")
(01 0) (121 0) (91 1) (4:3) (9, 3) mod (15’ ")
(0’0) (7)0) (4v2) (9’2) (13’2) mod (15’ _)
(0’ 1) (5’ 1) (119 1) (12) 1) (8» 2) mod (1‘5’ ")
(0) 1) (1’ 1) (5i 1) (7’ 1) (19 3) mod (15) —)
(0,1) (2,1) (6,2) (92) (53) mod(15,-)
(07 1) (12’ 1) (139 2) (14) 2) (4’ 3) mod (15’ "')
(0» 2) (21 2) (59 2) (13) 2) (0’ 3) mod (15) _)
(012) (1»2) (7’2) (ls 3) (41 3) mod (15, _)
(0’3) (2’3) (4’ 3) (5)3) (11, 3) mod (15, —)

By adjoining the blocks of a minimum bicover of seven points defined on the
set {z1,Z3,...;2Z7}, the required bicover of 67 points is obtained. (]

In [5], S. Furino shows that there exist a 2-resolvable BI B D(125+10,4,2)
for all but a finite number of positive integers s. For completeness, a special
case of that result is given here.

Lemma 3.8 Ifq is a prime power, ¢ = 3 (mod4), ¢ > 3, then a 2-resolvable
BIBD(3q + 1,4,2) ezists.

Proof. The points of V are a point at infinity X and the 3¢ ordered pairs
(4,a), where i is an integer modulo 3, and a € GF(q). Let B be a fixed
element of GF(q),8 # 0,%1. For each a in GF(g) the block

X (0,0) (La) (20),
taken twice, and the 3(g — 1)/2 blocks
(hatw) (i,a -w) (i+la +wp) (i+1l,a—wp),



where i is an integer modulo 3, and w is a non-zero square in GF(g), form
a 2-resolution class. The collection of all these classes is a 2-resolvable
BIBD(3q +1,4,2). a

Lemma 3.7 Ifv=1,27, or 37(mod 50), then C3(v) = B;(v).

Proof. For v = 7(mod 50), applying Lemmas 3.2 and 3.5 with m =
0 (mod 5) and t = 3 yields the result for all cases except for v = 307. In
this case apply Lemma 3.4 to a BIBD(156,6,1), taking a block of size 6 as
a flat and t = 3.

For v = 27(mod 50), applying Lemmas 3.2 and 3.5 with m = 0 (mod 5)
and ¢t = 13 yields the result for all cases except v = 77,127, or 327.

The case v = 77 is handled recursively, based on the fact that C3(19) =
B,(19), as is shown below.

For v = 19, let V be the points {1,2,...,19}. Then the blocks of the
required bicover are

0 1 2 3 4|17 13 14 16|3 6 9 15 18
0 1 2 5 6|18 10 12 15|3 6 12 16 17
0 3 4 7 8f1 8 11 16 18|3 7 15 16 18
0 5 7 8 9|19 15 17 18|3 8 10 11 14
0 6 10 11 152 3 9 11 13|4 5 11 14 15
0 9 10 12 16|2 4 11 12 18|4 5 15 16 17
0 11 13 16 17|2 5 10 16 18|4 6 8 12 13
0 12 14 17 18|2 6 7 10 14({4 6 9 14 16
0 13 14 15 18(2 7 12 13 15|4 7 10 17 18
1 3 512 14(2 8 9 14 17|5 6 8 13 18
1 4 9 10 13|2 8 15 16 17(5 7 9 11 12
1 6 7 11 17|3 5 10 13 17

For v = 77, by Lemma 3.6, there exists a 2-resolvable BI BD(58,4,2), say
D. Let z,,z3,...,210 be points which do not occur in D. To each block of
the i’th 2-resolution class of D, adjoin the point z;, and to the resulting set
of blocks, adjoin the blocks of a minimal bicover of 19 points defined on the
set {z1,Z3,...,Z19}. The result is a bicover of 77 points with B,(77) blocks.
For the cases v = 127 and v = 327, apply Lemmas 3.2 and 3.5 with ¢ = 3,
and m = 12 and 32, respectively.

For v = 37(mod 50), applying Lemmas 3.2, 3.5 and 3.1 with m =
0 (mod 5) and ¢ = 18 or m = 2(mod 5) and ¢ = 8 yields all cases except for
v =87.

For v = 87, proceed as follows. Delete 7 points from one group of a
TD(6,8) to obtain a GDD(8°1*,{5,6},1) and inflate each point by a fac-
tor of two to obtain a GDD(16°2!,{5},2), say D. Let the groups of D be
G1,Ga,...,Ge where |G;] = 16 for i = 1,2,...,5 and |Ge| = 2. Let X be



a set of five points not occurring in D. For each i, = 1,2,...,5, form a
copy of a BIBD(21,5,1) D; on G; U X in such a way that X occurs as a
block, and adjoin two copies of each block of D; except X to the blocks of
D. Finally, adjoin the blocks of a bicover of Gg U X with By(7) = 5 blocks
to the above set of blocks to obtain the desired bicover. o

The foregoing is summarized in the following theorem.

Theorem 3.8 Let v be a positive integer congruent to 7 (mod 10). Then
Cy(v) = By(v).

4 Bicovers for orders congruent to 9 (mod
10).

In this section, bicovering numbers for orders v = 10m + 9 are determined.

Lemma 4.1 Let v = 20m + 19, where m > 1. If Ci(v — 2,5,2) =
Bi(v —2,5,2), then Cy(v) = Ba(v).

Proof. Let D, be a (5,2) cover of index one of 20m + 17 points which has
precisely B;(20m +17,5,2) blocks. Then elementary counting shows that D,
contains two special points, z and y, which have the property that the pair
{z,y} occurs in precisely five blocks of D;, whereas every other pair occurs
in precisely one block of D;. Let us assume, without loss of generality, that
the remaining points of D, are 1,2,...,20m + 15, and that D, contains the
blocks B; = {z,¥,1,2,3} and B; = {z,,4,5,6}.

Now let D; be a BIBD(20m + 21,5,1) (recall that such a BIBD ex-
ists in view of [9]). Without loss of generality, suppose that D, is de-
fined on the set {1,2,...12m + 15,z,y,a,b,c,d} and contains the blocks
B; = {a,c,1,2,3} and B, = {b,d,4,5,6}. Create a new set of blocks Ds on
the set {1,2,...,12m + 15, z,y, a, b} from the blocks of D, as follows: Delete
the blocks Bs and B, from D;, then replace all occurences of the symbol ¢
in the remaining blocks by the symbol a, and replace all occurences of the
symbol d by the symbol b. To this set of blocks, adjoin all blocks of D,
except for By and Bj. Finally adjoin the blocks {z,a,1,2,3}, {y,4,1,2,3},
{=,b,4,5,6}, and {y,b,4,5,6}. Then this collection of blocks forms a bicover
of the set {1,2,...,20m + 15,2,y,q,b} in which the pair {z,y} occurs in
exactly four blocks, the pair {a,b} occurs in exactly four blocks, and each of
the pairs {z,a}, {z, b}, {y,a},{y,b} occurs in exactly three blocks. All other
pairs occur in precisely two blocks. Therefore the bicover contains exactly
eight extra pairs, so by Lemma 2.1, C3(v) = Ba(v). o

10



Corollary 4.1.1 Suppose that v = 100m + 99 or v = 100m + 19 where
m > 0. Then Ca(v) = By(v).

Proof. It is shown in [7] that Ci(v — 2,5,2) = By(v — 2,5,2) for these
values of v with the exception of v = 19. The case v = 19 is handled in the
proof of Lemma 3.7. o

The next theorem involves the notion of an incomplete bicover. Let v
and w be positive integers, where both v and w are odd. By an incomplete
bicover of type (v, w), denoted by I B(v,w), we mean a triple (V, W, F') where
V and W are disjoint sets of cardinality v — w and w respectively, and F is
a family of subsets (blocks), each of size five, from § = V U W, which has
the following properties:

(i) each pair of distinct elements {z1,22}, where at least one of z; or z»
does not lie in W, occurs in exactly two blocks of F; and

(i) no pair of distinct elements {z1,Z2}, each of which lies in W, occurs in
any block of F'.

Clearly if C3(w) = Ba(w), then by adjoining the blocks of an appropriate
bicover of W to the blocks of an incomplete bicover (V, W, F), a bicover of
S =V UW with By(v) blocks is obtained.

Lemma 4.2 Let v and w be positive integers, where both v and w are odd.
Suppose that there ezists an incomplete bicover IB(v,w), and let
d = (v—w)/2. Suppose that there ezists a transversal design TD(6,d). Lett
be an integer satisfying 0 < t < d, and suppose that C3(2t +w) = B;(2t 4+ w).
Then Cy(10d + 2t + w) = B;(10d + 2t + w).

Proof. Delete d —t points from one group of the transversal design T'D(6, d)
to obtain a group divisible design GDD(d%t!,{5,6},1). Inflate each point
by a factor of two to obtain a group divisible design G = GDD((v —

w)5(2t)!, {5},2) Let the groups of this design be G;,G,,...,Gs, where
|Gi| = v —w, i = 1,2,...,5 and |Ge| = 2t. Let W be a set ofcardma.l-
ity w which is disjoint ftom the point-set of G. For i = 1,2,...,5, form an
incomplete bicover (G;, W, F;) and adjoin the blocks of F; to the blocks of G.
Then adjoin the blocks of a bicover of G¢ U W with By(2t + w) blocks. The
resulting set of blocks is a bicover of 10d + 2t +w points with B,(10d+ 2t + w)
blocks. o

The set W of an incomplete bicover (V, W, F) is referred to as the hole
of the bicover. An incomplete transversal design of index ), denoted by
T Dx(k,v)—TDx(k,w),is a triple (G, H, F), where G is a set {G1,G3,...,Gs}
of disjoint v-subsets, H is a collection {Hj, Ha,..., H} of w-subsets called
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holes, with the property that H; C Gi,i = 1,2,...,k, and if §; = U%,G;
and S; = UL, H;, then F is a family of k-subsets (called blocks) from S,
which has the property that any pair of elements z; and z, in distinct Gj,
where at least one of z; and z; does not lie in S,, lies in precisely A blocks,
whereas no pair of distinct elements z; and z;, where z; and z, both are in
S3, lies in any block. Clearly a T'Dy(k,v) — T Dy(k,w) is the same object as
a TD(k,v) — TD(k,w).

Lemma 4.3 There ezist incomplete bicovers 1B(29,7),1B(39,7),IB(49,7),
IB(59,7),1B(69,17), 1B(79,7), IB(89,17), and IB(109,27). Therefore
Ca(29) = By(29),Ca(39) = Ba(39), Ca(49) = Ba(49), Cx(59) = By(59),
03(69) = 32(69), 03(79) = Bz(79), 02(89) = Bz(89), and 02(109) =
B1(109).

Proof. In Lemma 3.6 it is shown that there exists a 2-RBIBD(6s + 4,4,2)
for many positive integers including s = 3 and s = 13. By adjoining 2s + 1
“new” points 00y,003,...,002,41 points to such a 2-RBIBD, with oco; being
adjoined to each block of the ith class, an incomplete bicover I B(8s+5,2s+1)
is obtained. In particular, there exist incomplete bicovers I B(29,7) and
1B(109,27).

To create an incomplete bicover IB(39,7), proceed as follows. Let V =
Z33, the group of integers (mod 32), and let H; denote the subgroup of even
integers and H; the coset of odd integers in Zs;. Let W = {z;,z3,...,27}
where every z;, ¢+ = 1,2,...,7 is invariant under the action of Z3;. Let F
denote the following set of blocks.

0 4 10 24 31 (mod 32)

z; 0 10 13 25 (translated by H;)

zz 0 10 13 25 (translated by H;)

z3 0 5 6 29 (translated by H;)

zg 0 5 6 29 (translated by H,)

zg 0 2 11 15 (translated by H;)

z¢ 0 2 11 15 (translated by H,)

zz 0 2 16 18 (translated by {0,1,2,-..,15})

Then (V, W, F) is an incomplete bicover.

To construct an incomplete bicover IB(49,7), proceed as follows. Let
V = Zg X 77, where Zg and Z7 are the cyclic groups of order six and seven
respectively. Let W = {z1,z2,...,27}. Let

Let 81 ={(0,5) (1,5) (2,4) : jet}
S:={(2,7) (3,5) (4,4) : jets};
Ss={(4,7) (5,5) (0,5) : jen};
Se={(1,7) (3,4) (5,4) : jem}.
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On each set S;, § = 1,2,3,4, form a copy of a BIBD(21,5,1). Then the
resulting 84 blocks of size 5 contain every pair of the form {(, j), (3,k)}, 7 #
k, exactly twice, and each pair of the form {(i,7),(h,k)}, ¢ # h, i — h #
3 (mod 6) exactly once, and no other pair. Now let H = {(0,),(2,7),(4,7) :
j € Z7}. To the above blocks adjoin the following collection:

z; (0,0) (1,1) (3,2) (4,3) (translated by H)
zz (0,0) (1,2) (3,4) (4,6) (translated by H)
z3 (0,0) (1,3) (3,6) (4,2) (translated by H)
zq (0,0) (1,4) (3,1) (4,5) (translated by H)
zs (0,0) (1,5) (3,3) (4,1) (translated by H)
z¢ (0,0) (1,6) (3,5) (4,4) (translated by H)
z7 (0,0) (1,0) (3,0) (4,0) (translated by H)

These blocks contain every pair {(%,7), (k,k)}, i # h, exactly once, except
for pairs in which i — A = 3(mod 6) which occur twice. Further each pair
{zx,(i,7) : k = 1,2,...,7, i € Zg,j € I7} occurs in precisely two blocks.
Therefore these are the blocks of ar incomplete bicover.

To comstruct an incomplete bicover IB(59,7), proceed as follows. Let
V = Zs; and W = {z,23,...,27} and let H; denote the subgroup of even
integers and H, the coset of odd integers in Zg,. Let F denote the following
set of blocks.

0 4 16 20 28 (mod 52)

0 13 14 19 44 (mod 52)

0 3 9 14 32 (mod 52)

z; 0 2 35 45 (translated by H,)

za 0 2 35 45 (translated by H,)

zg 0 2 15 37 (translated by H,)

zg 0 2 15 37 (translated by H;)

zg 0 11 42 45 (translated by H,)

zg 0 11 42 45 (translated by H;)

z; 0 1 26 27 (translated by {0,1,2,...,25})

Then (V,W, F) is an incomplete bicover.

To construct an incomplete bicover (69,17) proceed as follows. Let D be
a resolvable BIBD(52,4,1) and let C1,Cs,...,C17 be its resolution classes.
Let W = {z;,z3,...,217} be disjoint from the point-set of D. By adjoining z;
to each block of C;, and taking each block twice, the blocks of an incomplete
bicover are formed.

To construct an incomplete bicover (79, 7), proceed as follows. Let V =
Z7; and W = {z1,z3,...27} and let H; denote the subgroup of even integers
and H, the coset of odd integers in Z7,. Let F denote the following set of
blocks.
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0 1 3 5 9 (mod72)

0 3 13 18 38 (mod 72)

0 6 26 27 55 (mod 72)

0 8 18 32 53 (mod 72)

0 12 24 40 53 (mod 72)

zy 0 11 42 49 (translated by H,)
23 0 11 42 49 (translated by H,)
zg 0 9 25 42 (translated by H,)
zg 0 9 25 42 (translated by H,)
zg 0 7 22 33 (translated by H,)
z¢ 0 7 22 33 (translated by H,)
z; 0 14 36 50 (translated by {0,1,2,...,35})

Then (V, W, F) is an incomplete bicover.

To construct an IB(89,17), proceed as follows. Let V = {(i,j) : i €
Zs6,j € 72}, and let W = {[h,j],: h € Zs,j € Z3} U {z}. Let ¢ and 7 be the
mappings given by oz = 7z = 2, o[k, j] = [h’j]’ o(i,j) = (3+1,5), (h,j] =
[h,5+1], 7(i,5) = (i,5 + 1). Let G be the group of order 72 generated by o
and 7.

There are 18 distinct blocks obtained by applying the elements of G to

the base block
z (0,0) (9,0) (18,0) (27,0).

We take each of these 18 blocks twice. In addition we take the 720 blocks
obtained by applying the elements of G to the following 10 base blocks:

0,0 (00) (10 (1) (6.
[L,o] (0.0) (40) (L1 (161)
2,0] (00) (60) (01) (10,0)
3,0] (0,0) (1.0) (151) (28,1)
0] (0,0) (80) (13,1) (25.)
5,0] (00) (100) (L) (22,0)
6,0] (00) (110) (13,1) (29,0)
(0] (00) (130) (31) (22.)
©0) (1L0) (39) (1,0 (150)
(1) (60) (170) (20,0) (0,1).

If F denotes the set of blocks above, then (V,W, F) is an incomplete
bicover.

The relation C3(v) = B;(v) is obtained for v € {29,39,49, 59, 69,79, 89,109}
by adjoining the blocks of an appropriate bicover on the set W in each case.
D .
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Lemma 4.4 Let v = 9(mod 50). Ifv # 9, then Cy(v) = By(v). Further
Ci(9)=B,(9) +1=9.

Proof. It is readily verified that C2(9) = B(9) + 1 = 9. (Such a cover can
be obtained from the blocks of 0 1 3 4 6 (mod 9).) For v > 409, the result
follows from Lemma 3.2 (the case m = 0 (mod 5) and ¢ = 29), and the fact
that C5(59) = B,(59). Also, by Lemma 4.3, C3(109) = B,(109). The cases
v = 309 and 359 follow from Lemma 3.2 and the fact that C,(39) = B,(39) by
taking ¢ = 19 and m = 27 and 32 respectively. This leaves only the cases of
v € {159,209,259}. Cases 159 and 209 follow from the existence of resolvable
BIBDs with parameters v = 65,k = 5,A =1 and v = 85,k = 5,A = 1 and
the equations 159 = 2.65 + 29 and 209 = 2.85 + 39 respectively, using Lemma
3.3.

For v = 259, use Lemma 4.2 and the fact that there exists an incomplete
bicover I B(49,7) and a T'D(6,21). Since 259 = 10.21 + 49, it follows from
Lemma 4.2 that C5(259) = B,(259). o

Lemma 4.5 Let v = 19(mod 50). Then C(v) = By(v).

Proof. If v > 19 and v = 19 (mod 100) the result follows from Corollary
4.1.1.

For v = 69, the result follows from Lemma 4.3. For v = 69(mod 100)
and v > 169, the result follows from Lemma 3.2 (the case m = 0(mod 5)
and t =9).

Lemma 4.8 Let v = 29(mod 50). Then C;(v) = By(v).

Proof. For v > 179, v # 329, the result follows from Lemma 3.2 (the case
m = 0(mod 5) and ¢t = 14). For v = 329, begin with a TD(6,15). Since
there exists a BIBD(21,5,1) and BIBD(25,5,1), there exists a GDD(4°,{5},1)
and a GDD(4%,{5},1) obtained by deleting a point from each of these
designs. Doubling each block of these group divisible designs produces a
GDD(4%, {5},2) and GDD(4%,{5},2). Deleting 8 points from one group of
the transversal design, and inflating the remaining points by a factor of four
yields a GDD(60°28,{5},2), say D’. Let co be a point not occurring in this
group divisible design. For each group G of size 60 of D’, adjoin the blocks
of a BIBD(61,5,2) defined on GU {oo} to the blocks of D', then adjoin the
blocks of a B3(29) bicover of G * U{oo}, where G is the group of size 28.
The resulting set of blocks is a bicover of 329 points with B,(329) blocks,
showing that C,(329) = B,(329).

For v = 29 and 79, the result follows from Lemma 4.3.

The case v = 129 can be treated as follows. A pairwise balanced design
D of index A = 1 of order 129 with precisely one block of size 29 and all
other blocks of size 5 was constructed in [12]. If each block of size 5 of D is
replaced by two copies of itself, and if the block of size 29 is replaced by a
bicover of its underlying set which contains B;(29) blocks, the resulting set
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of blocks of size 5 has excess frequency 8, and is therefore a bicover of order
129 which contains B,(129) blocks, hence C3(129) = B»(129).

Lemma 4.7 Let v = 39(mod 50). Then Ca(v) = By(v).

Proof. For v > 239, v # 339, the result follows from Lemma 3.2 (the case
m = 0(mod 5)) and ¢ = 19) and the fact that C3(39) = B(39).

For v = 39 and 89, the result follows from Lemma 4.3.

For v = 139, 189, and 339, the result follows from Lemma 3.2 with ¢ = 9
and m = 12, 17, and 32 respectively.

This establishes the lemma. m]

Lemma 4.8 Let v = 49(mod 50). Then C3(v) = By(v).

Proof. For v = 99 (mod 100), the result follows from Corollary 4.1.1.
For v = 49 (mod 100), the result follows from Lemma 3.2 (the case m =
0 ( mod 5)) and the fact that C5(49) = B;(49), except for v € {149,249, 349}.
For v = 149, the result follows from the fact that thereis a 2— RBIBD(112,4,2)
(obtainable by doubling the RBIBD(112,4,1)), and therefore there exists
an incomplete bicover I B(149,37), whose “hole” can be filled. For v = 249,
use Lemma 4.2 and the facts that there exists an 1B(49,7) and a T D(6,21).
Since 249 = 10.21 + 39, it follows that C5(249) = B»(249). For v = 349, use
Lemma 3.2 with m = 32 and ¢ = 14. o
The foregoing can be summarized as follows.

Theorem 4.9 Let v be a positive integer congruent to 9 (mod 10). Then
C3(9) = B;5(9) + 1, and if v > 9, then Cy(v) = Ba(v).

5 Odd bicovers for odd v.

Since there exists a BIBD(v,5,2) for allv = 1 or § (mod 10), v > 5, v # 15,
it follows that C3(v) = B,(v) for these values.

Lemma 5.1 C3(15) = 22 = B,(15) + 1.

Proof. It is well-known that there does not exist a BIBD(15,21,7,5,2).
Hence C;(15) > 21. To show that C(15) = 22, let the set of points be

{(3,7) : i € Zs,j € Z3}. Then the set of 22 blocks exhibited below form a
bicover.
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(0,k) (1,h) (2,h) (3,h) (4,h) K
(0’ 0) (g’ 0) (0’ 1) (291 1) (39’ 2) g
(o, 0) (39, 1) (0,2) (29, 2) (39,2) g

This establishes the lemma. o
The foregoing can be summarized as follows.

0,1
1,2 mod(5,-)
1,2 mod(5,-).

Theorem 5.2 Let v be an integer satisfying v > 5, v = 1 (mod 2), v #
3 (mod 10), and v ¢ {9,15}. Then Cp(v) = By(v). If v = 9 or 15, then
Cy(v) = Ba(v) + 1.

If we analyze our constructions carefully we obtain the following result.

Theorem 5.3 There is an I B(v,7) in the following cases:
(i) v="7 or 29 (mod 50);
(ii) v =9 (mod 50), v # 9,109;
(iii) v = 39 (mod 50), v # 89,139,189, 339;
(iv) v =49 (mod 100), v # 149;
(v) v = 67,87,127,327.

Furthermore, there is an IB(v,17) if v = 69,89, or if v = 37 (mod 50), v #
37,87,237,437,537. There is an IB(v,19) if v = 77,139,189,339, orif v =

69 (mod 100), v # 69. There is an I B(v,27)if v = 109 or if v = 27 (mod 50), v #
77,127,327. There is an IB(v,37) if v = 149 or if v = 37 (mod 50), v #
87,137,187,337.
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