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Abstract. Steiner Heptagon Systems (SHS) of type 1, 2, and 3 are defined and the
spectrum of type 2 SHSs (SHS2) is studied. 1t is shown that the conditionn = 1or 7
(mod 14) is not only necessary but also sufficient for the existence of an SHS2 of order
n, with the possible exceptions of n=21 and 85. This gives an interesting algebraic
result since the study of SHS2s is equivalent to the study of quasigroups satisfying the
identities 22 = z, (yz)z = y, and (zy) (¥(zy)) = (y=)(2(yx))-

0. Introduction

In [1] C.C. Lindner and D.R. Stinson define and investigate Steiner Pentagon
Systems. This paper extends their ideas by studying Steiner Heptagon Systems
(SHSs). It turns out (Section 1) that there are three possible types of such sys-
tems and in each case a suitable quasigroup is associated with the system. The
most interesting type appears to be type 2 and the aim of this paper is to inves-
tigate SHS2s. The necessary condition n = 1 or 7 (mod 14) is shown to be
sufficient with the possible exceptions of n = 21 and 85. The main constructions
use certain types of orthogonal quasigroups (with holes). The cases not handled
by the main constructions are taken care of by brute force examples, finite fields
and direct products. The main constructions are inspired by those in [1]. From
the algebraic point of view, the study of SHS2s is equivalent to the study of the
class of quasigroups satisfying the 2-variable identities z2 = z,(yz)z = ¥, and

(zy)(y(zy)) = (yz)(z(yT))-

1. Heptagon Systems

A Heptagon System (HS) is a pair (K4, E), where K, is the complete (undi-
rected) graph with n > 7 vertices and E is a collection of edge disjoint heptagons
which partition the edges of K.
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Example 1.1 (K7, E).
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So that the pictures do not get out of hand, from here on we will denote the
heptagon (below) by any cyclic shift of (e, b, ¢, d, e, f,g) or (b,a,g, f,e,d,c).

Examplel1.2.(Ks5,E)

c (1,4,10,8,13,6,5)
g b (2,5,11,9,14,7,6)
(3,6,12,10,15,8,7)
(4,7,13,11,1,9,8)

£ c (5,8,14,12,2,10,9)
(6,9,15,13,3, 11, 10)
(7,10,1,14,4,12,11)
Ei =1 (8,11,2,15,5,13,12)
(9,12,3,1,6,14,13)
(10,13,4,2,7,15, 14)
(11,14,5,3,8,1,15)
(12,15,6,4,9,2,1)
(13,1,7,5,10,3,2)
(14,2,8,6,11,4,3)

L (15,3,9,7,12,5,4)

If (K,, E) is a HS, then the number n s called the order of the system and it
is straightforward to see that the number of heptagons is | E| = ﬁ';"Tl)—. Moreover,

the number of heptagons containing a vertex z is obviously "—;—1 so nmust be odd.
Hence: n = 2m + 1,(2m + 1)2m = 14k,= (2m + 1)m = Tk,= 7|m or
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7|(2m + 1) = n= 1 or 7 (mod 14). So a necessary condition for the existence
of a HS of order nis n= 1 or 7 (mod 14).

Given a HS (K,,E), we can define a binary operation on the set
Q= {1,2,---,n} in three reasonable ways:

() VzeQ,zo1z=1z,andVz,y € Q,zs7 y,501y=yo1Z =2
iff (z,v,0,b,2,c,d) € E. The groupoid (Q,01) is commutative
and idempotent.

(i) Vz € Qzopz =1z,andVz,y € Q,z # y,z02 9y = z and
y oy z = v iff (z,9,2,4a,b,c,v) € E. The groupoid (Q,02) is
idempotent but not commutative.

(i) Vz € Q,z03 7 = z,andVz,y € Q,z # y,z 03y = 2z and
yos T = v iff (,y,a,2,b,v,c) € E. Again the groupoid (Q, 03)
is idempotent but not commutative.
Example 1.3. The tables of (K7, E) (Example 1.1) for o1, 0,, and o3 are
the following:

of) 1 2 3 4 5 6 7 ol 1 2 3 45 6 7
11152 6 3 7 4 113 5 7 2 46
2152 6 37 41 217 2 4 6 1 35
3l 26 37 415 31 6 1 35 7 2 4
41 6 3 7 41 5 2 415 7 2 4 61 3
5137 415 26 514613572
6l 7 415 2 6 3 6| 3 57 2 4 6 1
714 1 5 2 6 3 7 712 4 6 1 3 5 7

o3l 1 2 3 4 5 6 7

1l 1 4 7 3 6 25

216 2514 73

314 7 3 6 2 51

41 2 51 4 7 3 6

5173 6 2 5 14

6] 514 7 3 6 2

713 6 2 51 47

In this example the groupoids (Q, 01), (Q,02), and (Q, 03) are quasigroups.
That is to say, each element of () occurs exactly once in each row and column in
each table.

Proposition 1.4. If (K,, E) is a HS and (Q,01),(Q,02),and (Q,03) are the
associated groupoids, then:

(i) (Q,o1) is a quasigroup iff every pair of vertices are joined by a
path of length 3 in exactly one heptagon of E.

(i) (Q,o2) is a quasigroup iff every pair of vertices are joined by a
path of length 2 in exactly one heptagon of E.
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(iii) (Q,o3) is a quasigroup iff every pair of vertices are joined by a
path of length 2 in exactly one heptagon of E and by a path of
length 3 in exactly one heptagon of E.

Proof: It immediately follows from the given definitions of the binary operations.
|

Definition 1.5 A Steiner Heptagon System of type 1 (SHS1) isaHS ( K, E)
such that the groupoid (Q, o1 ) associated with it is a quasigroup. Analogously we
define a Steiner Heptagon System of type 2 (SHS2) and of type 3 (SHS3).

By the above proposition, every SHS3 is a SHS1 and a SHS2. The HS
(K7, E) of Example 1.1 is a SHS3. The HS ( Kis, E1) of Example 1.2 is SHS2
but it is not an SHS1 (and consequently not a SHS3) because 1013 = 13 = 101 4.

2. SHS2s

If (K, E) is a SHS2, then the quasigroup (), o2) associated with it satisfies
the following identities:
21) VzeQ,z?=az,
(22) Vr,yeQ,(yz)z =y, and
(23) Vz,y € Q,(zy)(y(zy)) = (yz)(z(yz)).
From (2.2) and (2.3), by replacing x with y and y with xy we obtain:

(24) Vz,y € Q,(y(zy))((zy)(y(zy))) = z(yz).

Theorem 2.5. If(Q,0) is a quasigroup of order n which satisfies (2.1), (2.2),
and (2.3), then there exists a SHS2( K ,, FE) of ordern.

Proof: For each pair {a,b} C Q witha ¥ b we put in FE the heptagon
(a,b,ab, b(ab), (ab)(b(ab)) = (ba)(a(ba)),a(ba),ba).

The points a, b, ab, b(ab),(ab) (b(ab)),a(ba), and ba are distinct and each of the
seven edges {a,b} ,{b,ab} ,{ab, b(ab)} , {b(ab),(ab)(b(ab))},
{(ab)(b(ab)),a(ba)} , {a(ba),ba} , and {ba,a} defines the same heptagon. R

Thus that study of the spectrum of SHS2s is equivalent to the study of the
spectrum of quasigroups satisfying (2.1), (2.2), and (2.3). In what follows we shall
show that the condition of n = 1 or 7 (mod 14) is also sufficient for the existence
of a SHS2 of order n, with two possible exceptions.

Definition2.6. We define a cyclic semi-perpendicular array (CSPA) of order
n and strength k to be an (;‘) x k array A such that each cell is occupied with
one of the symbols 1,2, -- -, n and such that if we run our fingers down any two
columns that are adjacent (the first and the last columns are considered adjacent)
or that are at distance 2 (the second and the last columns and the first and the
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(k—1)" columns are considered at distance 2) we obtain each of the (3) 2 element
subsets of {1,2,---,n} at least (therefore exactly) once. Moreover we require
that A is invariant with respect to cyclically permuting the columns according to
the permutation @ = (12 3 4 5 6 7). That is to say, when the columns are
permuted according to « the resulting array contains exactly the same rows (but
not necessarily at the same level, or course).

Observation. A CSPA(n,7) A is equivalent to a SHS2 (K, E); the equiv-
alence being

e E iff (a,b,c,d,e,f,g),
f c

e d
iff(av b,C, drer f)g)9(b)c1 d,C,f,_(],a), (Cr d,e,f,g,a,, b)’ (dyer fvgrasb’c)7
(e, f,g,a,b,c,d),(f,g,a,b,c,d,e), and (g,a,b,c,d,e, f) are rows of A.
In what follows it is a good deal easier to describe the construction of SHS2s
in terms of CSPAs than in terms of graph theory, and so we switch over to CSPA
vernacular.

3. n=7 (mod 14) n > 21.

Theorem3.1. Letn= 7 (mod 14) and n > 21. Then there exists a CSPA(n, 7).

Proof: Write n = 7(2k + 1). Let (Q,0) and (Q,®) be a pair of orthogonal
idempotent quasigroups of order m = 2k + 1. Further let (Q,®) be commuta-
tive. Such a pair of quasigroups exists forevery m = 2k +1 > 5 [2], [3]- Denote
by A the (m? —m) x 7 array with rows (a, b, aob, a,a®b, b,boa),alla # b € Q.
Further, denote by T the Z2= rows of A witha < b, and by B the (=1 rows
of A with @ > b. Note that (a,b,c,d,e, f,9) € T iff (b,a,9,f,e,d,c) € B.
Finally, let C = {(1,1,2,4,7,4,2),(2,2,3,5,1,5,3),(3,3,4,6,2,6,4),
(4,4,5,7,3,7,5),(5,5,6,1,4,1,6),(6,6,7,2,5,2,7),
(7,7,1,3,6,3,1)}andset X =Q x {1,2,3,4,5,6,7}.
Now define a (") x 7 array P basedon X = Q x {1,2,3,4,5,6,7} by:
(1) For each a € Q, define a CSPA(7,7) on {(e,1), (a,2), (a,3),
(a,4), (a,5), (a,6), (a,7)} (which exists because of the exis-
tence of a SHS2 of order 7) and place these 21 rows in P, and
(2) foreachrow (a,b,aob,a,a®b,b,boa) € T andeach(1,1,7,k,t,k,j) €
C place the 7 rows
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((a,9),(b,i),(a0b,j),(a,k),(a®b,t),(b,k),(boa,j)),
((b,9),(a0b,j),(a,k),(a®b,t),(b,k),(boa,j),(a,9)),
((a0b,j),(a,k),(a®b,t),(b,k),(boa,)),(a,i),(b,1)),
((a,k),(a®b,t),(b,k),(boa,)),(a,i),(b,3),(a0b,j),
((e®b,t),(b,k),(boa,j),(a,i),(d,9),(a0b,j),(a,k)),
((b,k),(boa,)),(a,i),(b,3),(a0b,j),(a,k),(a®b,t)),and
((boa,j),(a,1),(b,1),(a0b,j),(a,k),(a®b,t),(b,k))in P.

Claim: P is a CSPA(7m,7). It is clear that P is cyclic and has 1’1(72’"—‘1)-
rows. It remains to show that if we run our fingers down any two columns of P
that are at a distance 1 or 2, we obtain each 2-element subset of X at least once. So,
consider the 2-element subset {(a,2), (b,;)} of X. If a = b, since the rows of a
CSPA(7,7) defined on {(a, 1),(a,2), (a,3),(a,4),(a,5),(a,6),(a,7)} belong
to P we are done.

If a # b there are two cases.

Casel. a # b,1 = j. It suffices to show that P contains a row of the
form ((a,1),(b,%), .,y .) 0r ((b,7),(a,?),.,.,.,.,.) and a row of the form
(s (ayk), ., (b, k), )or(.,.,.,(bk),.,(a,k),.). Amustcontainarow of the
form
(a,b,c,a,d,b,e). If this row is in T then

((a,3),(b,9),(c, /), (a,k),(d,1), (b, k),(e,j)) € P;
otherwise (b,a,e,b,d,a,c) € T and
((b,9),(a,9),(e,5), (b, k), (d,1),(a,k),(c,/)) € P.
Case2. a # b,i # j. It suffices to consider the cases1 = 1,j = 2;i=1,j =
4;1=2,j="1.
Case 2a. 1 = 1,j = 2. It suffices to show that P contains a row of the
form (., (e, 1),(4,2),.,.,.,.) or((a,1),.,.,.,.,-,(b,2)) and a row of the form
((a,1),.,(b,2),.,.,.,)0r(,(a,1),.,.,..,(b,2)). Since (Q, o) isa quasigroup,

there exists in A a row of the form (z,qa,b, z,d,a,c). If this row belongs to T
then

((z,1),(a,1),(b,2),(z,4),(d,7),(a,4),(c,2)) € P; otherwise

(a,z,c,a,d,z,b) € T and

((e,1),(z,1),(¢,2),(a,4),(d,7),(z,4),(b,2)) € P.
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Since ((Q, o) is a quasigroup there exists in A a row of the form (a, 7, b, 0, d, T, ).
If this row is in T" then

((a,1),(2,1),(b,2),(a,4),(d,7),(2,4),(c,2) € P;

otherwise (z,q,c,,d,a,b) € T and

((z,1),(a,1),(¢,2),(2,9,(d,7),(a,4),(b,2)) € .

Case 2b. i = 1,j = 4. It suffices to show that P contains a row of the
form (., ., ., (a,1),(b,4),.,.) or (,+,-,-,(b,4),(a,1),.) and a row of the form

(., (a,1),.,(b4),.,.,.) or ((¢,1),....,(b4),.). Since (Q,®) is a quasi-
group, there exists in A a row of the form (a,z,¢,q,b,z,d). If this row is in
T then

((a,5),(z,5),(c,6),(a,1),(b,4),(z,1),(d,6)) € P;
otherwise (z,a,d, z,b,a,c) € P and
((z,5),(a,5),(d,6),(z,1),(b,4),(a,1),(c,6)) € P.

There exists in A a row of the form (a, b, ¢, a,d, b, €). If this row is in T, then

((a,1),(b,1),(c,2),(a,4),(d,7),(b,4),(e,2) € P;

otherwise (b, a,e,b,d,a,c) € T and

((b,1),(a,1),(e,2),(6,4),(d,7),(a,4),(c,2)) € P.

Case 2c. i = 2,j = 7. It suffices to show that P contains a row of the
form (.,.,(0,7),(2,2),.,) O (1,5 (a,2), (b, 7)) and a row of the form
((a,2),.,(0,7,,)0r(,..,(5,7),.,(a,2). Since (Q, o) is a quasigroup,
there exists in A a row of the form (a,z,b,a,d, z,c). If this row belongs to T’
then

((a,6),(z,6),(b,7),(a,2),(d,5),(z,2),(c,7)) € P;

otherwise (z,qa,c, z,d,a,b) € T and

((z,6),(a,6),(¢,7),(2,2),(d,5),(a,2),(5,7) € P.

Since ((),0) and (Q,®) are orthogonal, there exists in A a row of the form
(z,9,0,12,b,y,c). If this row is in T', then

((z,1),(1,1),(e,2),(2,4),(5,7),(1,4),(c,2)) € P;

otherwise (v, z,¢,y,b,z,a) € T and

((v,1,(2,1),(¢,2),(9,4),(,7),(,4,(a,2)) €P. B
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4. n=1 (mod 14)

Write n = 7(2k) + 1. Let ) be a set of the sizem = 2k and H =
{hi,--- , hi} a partition of Q with the property that 7|h;| + 1 is in the spectrum of
SHS2s. Let (Q,0) and (Q, ®) be a pair of orthogonal quasigroups with holes H
and further let (Q,®) be commutative. Denote by A the (m? —2m) x 7 array
with rows (a,b,a0b,a,a ® b,b,boa),alla,b € Q and a and b do not belong to
the same hole. Denote by T'(B) the ﬂ(ﬂz‘—zl rows of A witha < b(a > b). Set
X ={oo}uU(Qx{1,2,3,4,5,6,7}) and define a CSPA(n, 7) whose rows are
elements of X by:

(1) For each hole h; € H construct a CSPA(7|h;| + 1,7) on {oo} U
(h; x {1,2,3,4,5,6,7}) and place these rows in P, and

(2) for x # y in different holes of H and each (4,1,/,k,t,k,j) € C
(see the previous section) we proceed in the same way as in the
14k + 7 Construction.

Since there exists a pair of quasigroups with the above properties with holes
of size two of order m = 2k for every m except when

me S ={4,6,8,12,16,20,24,28,30,32,36,40,
44 ,48,52,56,60,66,68,72,76,80,84,88,92,96,100,
104,108,116,124,136,144,148,152,160,168,176,216,228}
[2],[3] we have a SHS2 of order 7m + 1 for every evenm € S. 1
What follows provides a solution form = 2k € S and m # 12. We split the

solution into three self-explanatory parts.

5. The remaining cases

m = 8,n=57;57 = 7 -8+ 1 We exhibit two orthogonal quasigroups of
order 8, with holes of size two, one of which is commutative:

1 2 7 8 4 3 6 5 1 2 5 6 7 8 3 4
2 156 8 7 4 3 2 1 8 7 3 4 6 5
8 6 3 4 7 2 5 1 5 8 3 4 1 7 2 6
7 5 4 3 1 8 2 6 6 7 4 3 8 2 5 1
3 7 8 2 5 6 1 4 7 3 1 8 5 6 4 2
4 8 1 7 6 5 3 17 8 4 7 2 6 5 1 3
5 36 1 2 4 7 8 36 2 5 4 1 7 8
6 4 2 5 3 1 8 17 4 5 6 1 2 3 8 7
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Finite field construction

This construction provides a solution for m € {4,6,30,48,60,66,96}.
Consequently n € {29,43,211,337,421,463,673} andn = 14k + 1. Now, let
(F, +,-) be finite field of order n = 14k + 1 and let £ be a primitive element of
F. Set

_f(od o 2k+i | Ak+i _6k+i _8k+i _10k+i _12k+diy | _
B = {(z", ", g 2 2t T )Iz-O,l,---,k—l}

and define an (3) x 7 array A by: for each @ € F and each (z,y,2,u,w,t,v) €
B, place the 7 rows

(z+a,y+o,z+o,u+o,w+ao,t+av+a),
(v+a,z+a,u+a,w+a,t+ovtaz+a),
(z+a,u+a,w+a,t+a,v+as+ay+a),
(vta,wtat+a,v+a,T+a,y+az+a),
(w+ot+a,v+o,T+a,y+a,2+0,u+a),
(t+a,v+a,z+0,y+ 0,2+ a,u+a,w+a),and

(v+a,z+o,y+a,z+a,ut a,w+a,t+a)in A
Then A is a CSPA(n, 7). 1

Direct product construction

This construction provides a solution for

m € {20,24,28,32,36,40,44,52,
56,64,68,72,76,80,84,88,92,100, 104, 108,
116,124,136, 144, 148,152, 160, 168, 176,216,228 }..

We give the construction for m = 20 and 24 . For the other cases see Table 5.1.

m =20,n=141:141=7 - 20+ 1. Take a pair of (idempotent) orthogonal
quasigroups of order 5 say A and B. Further let B be commutative. Take the pair
of orthogonal quasigroups C and D defined as follows.

C D
1 3 4 2 1 2 3 4
4 2 1 3 21 4 3
2 4 3 1 34 1 2
31 2 4 4 3 2 1
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The direct products A x C and B x D are orthogonal quasigroups of order
20, with holes of size 4. Moreover, B x D is commutative. [

m=24,n=169:169 = 7-24+ 1. Let A and B be orthogonal quasigroups
of order 8 (see case m = 8). Let

1 2 3 1 3 2
c=3 1 2 and D=3 2 1.
2 31 2 1 3
Then A x C and B x D are orthogonal quasigroups of order 24, with holes
of size 6 and B x D is commutative. 1
Table 5.1
m n=7-m+ 1 orders of quasigroups used size of the holes of the
for the direct products orthogonal quasigroups
28 197 4,7 4
32 225 4,8 8
36 253 4,9 4
40 281 58 8
44 304 4,11 4
52 365 4,13 4
56 393 7,8 8
64 449 8,8 16
68 477 4,17 4
72 505 8,9 8
76 533 4,19 4
80 561 5,16 16
84 589 4,21 4
88 617 8,11 8
92 645 4,23 4
100 701 4,25 4
104 729 8,13 8
108 757 4,27 4
116 813 4,29 4
124 869 4,31 4
136 953 8,17 8
144 1009 9,16 16
148 1037 4,37 4
152 1065 8,19 8
160 1121 5,32 32
168 1176 7,24 24
176 1233 11,16 16
216 1513 9,24 24
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Theorem 5.1. There exists a CSPA(n,7) for every n = 1 (mod 14), except
possiblyn = 85.

Combining Theorems 3.1 and 5.1 gives the following theorem, which is the
main result of this paper.

Theorem 5.2. The spectrum for CSPA(n,7) s is precisely the set of alln= 1 or
7 (mod 14), except possiblyn = 21 and 85.
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