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Abstract. Essentially all pairs of forests (Fy, F2) are determined for which
R(F1,F3) is finite, where R(Fy, F) is the class of minimal Ramsey graphs
for the pair (Fy,F3).

INTRODUCTION

For graphs F,G and H (finite with no loops or multiple edges), we write
F — (G, H) (F “arrows” the pair G, H)) if whenever each edge of F is
colored red or blue, then either the red subgraph of F, denoted (F)g,
contains a copy of G or the blue subgraph of F, denoted Fg, contains a
copy of H. The graph F is called (G, H)—minimal if F — (G, H) but F' =
(G, H) for each proper subgraph F' of F. The class of all (G, H)—minimal
graphs will be denoted by R(G, H), and is called the Ramsey class of the
pair (G, H).

There have been several papers dealing with the problem of determining
for which pair of graphs (G, H) is R(G, H) infinite (or finite), see ([1]-
[6],(8],[9]). For example, Nesetril and R3dl [9] proved that R(G, H) is infi-
nite if both G and H are 3-connected or if both are 3-chromatic. The main
result of the present paper extends the results in [2], where star forests
without isolated edges were considered. We will deal with forests with iso-
lated edges, and determine all pairs of forests (Fy, F2) such that R(Fy, F)
is finite. In the statement of the main theorem which follows and through-
out the remainder of the paper, a star with n edges will be denoted by
S(n), instead of the usual notation K . Also for graphs G and H, GUH
will denote the graph with vertex-disjoint copies of G and H, and for any
positive integer n, nG will denote n vertex-disjoint copies of G.

Theorem 1:. If Fy and F, are forests, then R(Fy,F,) (or R(F;, Fy)) is
finite if and only if Fy and F» are both star forests such that,

8
F1=US(m‘-)UmS(1), my>--2my 22 m>0,

=1

t
F={JS(m)unS(1), ni>-->n>2,n>05>t>0,
-1
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and one of the following conditions hold:
(1) t=0,n>0
(2) s=t =1 and my,n; are odd
(38) s>2,t=1, m, n; are odd, -
m >ni+me—1 and n > ng = no(Fl,Fg).

Some additional notation and terminology will be needed. The word
“coloring” will always refer to coloring each edge of some graph either
red or blue. A coloring of F' with neither a red G nor a blue H will be
called (G, H)—good, or just a good coloring when the meaning is clear. For
a graph F, V(F), E(F) and A(F) will denote the vertex set, edge set,
and maximum degree respectively. The degree of a vertex v in F will be
written as dp(v) or just d(v) if F is obvious. If F is colored, then dg(v)
and dp(v) will be the degree of v in (F)z and (F)p respectively. Notation
not specifically mentioned will follow [7].

Preliminary Results

The proof of Theorem 1 will be broken into several cases. Some of these
cases have been considered in previous papers. The following list of results
will completely handle some cases or will be used in the proof of other cases.

Theorem A ([8] and [9]):. If F; and F, are forests with a non-star
component in at least one of the forests, then R(Fy, F2) is infinite.

Theorem B [4]:. For an arbitrary graph G and any positive integer
n, R(G,nS(1)) is finite.

Theorem C[2]:. For fixed odd positive integers m; and n; and arbitrary
non-negative intergers m and n, R(S(m;)UmS(1),S(n1)UnS(1)) is finite.

Theorem D [2]:. If at least one of m; or n; is even, then R(S(mi),
S(n1)) is infinite.

Two families of graphs will be used repeatedly in the proof. These graphs
were introduced in [2], where a verification of the properties stated can be
found.

Consider two star forests Fy = |J;_, S(m;) and Fp = U_, S(n;) where
m >mg>--->2my >1land ng > ng--- > ng > 1. Let £ = max{m; +
nj—1:i+5j=k+1}fork=1,2,...,s+t—1,and H=U;;'1—IS(£,¢).
Then H — (Fy, F3). In fact, it is easy to verify that HeR(Fy, F2). We will
denote the star forest H by F(Fy, F,). Although F(Fy, F;) will not be used
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explicity, the parameters £;,...,£4,4¢—; will be. We will always associate
the parameters £;,..., £y, with F(Fy, Fy).

Let £2> 2, s >t > 2 be fixed integers, and k > 6 be an even integer.
Consider a family of disjoints sets {A;}%_, such that |4;| = s+t—1, |4z| =
|Ak-1|=t, |Ax| = 1 and |A;| = t(¢£—1) fori = 3,...,k— 2. For each k, let
G = G(k) = F(s,t,£,k) be a graph with vertex set Uf=1 A; and edge set
described as follows:

(1) The pairs (A;,Az) and (Ax—1,Ax) generate complete bipartite
agraphs.
(2) The pair (A;, A;41) generates a regular bipartite graph of degree
t+£—3 when ¢ is odd and of degree 1 when i is even (3 <1 < k-3).

(3) The pairs (Az,As) and (Ak—2,Ax—1) generate bipartite
graphs with the vertices of A2 and Ag_; of degree £ — 1 and the
vertices of Az and Aj_o of degree 1.

The graph G has no other edges. Thus G is bipartite, each set A; is an
independent set, and each vertex in 4; (3 <t < k— 2) has degree t +£— 2.
It is easily verified that G — (S(s) US(t), S(¢)), but more importantly that
(G—e) = (S(s)uS(t), S(¢)) for any edge e not incident to a vertex in A;.
Therefore by deleting appropriate edges between A; and A,, one obtains a
diameter k subgraph G’(k) of G(k) such. that G'(k)eR(S(s) U S(¢), S(8)).
This results in an infinite family of graphs in R(S(s) U S(t),S(£)). The
edges of G'(k) will be called the critical edges of G(k).

PROOFS

The proof of Theorem 1 will be a combination of a series of lemmas
proved in this section and results from the previous section. We start with
some lemmas which give conditions on forests F;, and F, which insure that

R(Fl, Fz) is infinite.

Lemma 2:. Let F; = U;_, S(m;) and F, = |Ji_, S(n;) be star forests
withmy >mg > --->my>1andn; 2ny>--->n,>1.Ifng orm, is
even, then R(Fy, F3) is infinite. .

Proof: Theorem D implies that R(S(m;), S(n,)) contains an infinite fam-
ily {G: : i > 1}. We have already observed that H = F(Fy, F) = |Jit%™?
S(¢) has the property that H — (Fy, F;). If we replace S(4) = S(my +
n1 —1) by G; (for any j), we obtain a new graph L; =G;u U,::t;l S(&),
and the same argument used to show F(Fy, F;) — (F1, F2) implies that
Lj — (F1,F2).

Let e; be an edge of G; and assume that my = ... = m, > Mg+1 and
ny =---=np > npy1. Then £ = -+ = Ly4p_1 > £y1p. By assumption,
G; — e; can be colored such that there is no red S(m;) or blue S(ny).
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Also U1, S(£) can be colored such that there is no red aS(m;) or blue
bS(ny). Hence (L;—e;) = (F1, F3), and it follows that R(Fy, F2) is infinite,
for although L; may not be in R(F1, F3), any subgraph of L; in R(Fy, F,)
must contain G;. This completes the proof of Lemma 2. W

Lemma 8:. Let Fy = Ui_, S(mi) withmy > mg 2 --- 2 m, 2 1, and
F; = S(ny)unS(1). fmy < np+mg—2 and my,mz,n; > 2, then
R(Fl,Fz) is infinite.

Proof: Assume mg = mg -+ = m, > myy1. For k large and even, con-
sider G(k) = F(my,mz,n1,k). Recall that G'(k) — (S(m) U S(ms2),
S(n1)), and for k large G'(k) has many vertex disjoint stars S(mz +n1— 2).
Since S(p) — (S(a),S(b)) if a +b < p— 1, it is easily seen that Ly =
G(k) U (r — 2)S(mz + ny — 1) = (F1, F2).

On the other hand, it can be shown that for any edge ex of G'(k), Lk —
ex = (S(m1) U (r — 1)S(mz), S(n1)), and thus Li — ex = (Fy, F3). Hence
R(F1, F2) contains an infinite number of graphs, and this completes the
proof of Lemma 3. B

Lemma 4:. Let Fy = ;_; S(m;) and F2 = Uf=1 S(n;) withmy > ma >
.>my>landng >ng > >ny > 1 If mg,ng > 2, then R(Fy, F) is
infinite.

Proof: Consider the graph

a+t—1
F(F,F)= |J S(),
k=1

and the graph G(k) = G(my,m2, ny, k) for k even and large. We have the
parameters £;,%2,. .. £, +¢—1 from F(Fy, F3). The proof must be broken into
several cases, but the argument in each case has the same pattern as the
proof of Lemma 3. Therefore we will describe the appropriate graphs which
arrow, but we will omit the details of the verification.

Case 1: {3 > {3

Without loss of generality we may assume n;+mg > na+my, and if there
is equality we may assume ng < mo. It is straightforward to verify that if
n1+ mg = ny + my and ng < my, then G(k) — (S(m1), S(n1) U S(n2))-
Using this fact and the argument used in Lemma 3, one can prove that
G(k) — (F1, F2) for k large, and G(k) — ex = (F1, F2) for any critical edge
ex (in fact G(k) — ex = (S(m1) U S(mz), S(n1)))-
Case 2: £ = {3

Again with no loss of generality we may assume n; +mz > nz+my. Let
mo == Mg > Mg41 and ng = .- =np > Np41.
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subcase 1: n; +mg > na +my
For k large the graph Li = G(k) U (a — 2)S(m2 + ny — 1) — (F1, F2),
but for any critical edge ex of G(k), Lx — ex = (U~ S(m;), S(n1))-

subcase 2: n; + my = ny +my with m; #ms

Without loss of generality we may assume that a > b. Just as in the
previous cases, for k large, Ly = G(k) U (a — 2)S(m2 + ny — 1) — (Fy, F2),
but Li — ex - (U2, S(m;), S(n1)) for any critical edge ex of G(k).

subcase 3: m; = my and n; = ng

We may again assume that a > b. Let Ly = G(k)U(a+b—3)S(my+n;1—1).
For k large, Ly — (F1, F2), but Ly —ex = (aS(m1), 5S(n,)) for any critical
edge e of G(k).

This completes the proof of Lemma 4. B

Lemma 5:. Let F; = U_,S(m;) withmy > mg > ---2my, 21, s >
2, mpg > 2 and F, = S(n) UkS(1) with n > 2. If m; and n are odd
and my; > n+ mgp — 1, then there is a ko = ko(Fy,n) > 0 such that for
k > ko, R(Fy,F?) is finite.

Proof: We will verify that if £ > ko = s(my + 1)(s(m1 +2) + n+ 1), then
R(Fy, F) is finite. To prove this, it is sufficient to show that if FeR (F}, F2),
then F has a bounded number of edges. We will assume that F' has more
than (s(my + 1) + 2k + n + 1)3(k + s + 1) edges and show that this leads
to a contradiction.

First we make some observations about the degrees of vertices of F. If
A(F) £ my +n — 2, then F can be colored so that there is no red S(m;)
or blue S(n) by Petersen’s Theorem [10] (any regular graph of even degree
is 2-factorable). Thus A(F) > m; + n — 1. On the other hand; A(F) <
s(my1 + 1)+ n+2k+ 1. If not, let v be a vertex of F' which contradicts this,
and let e be an edge incident to v. The graph F — e has a (Fy, F3)-good
coloring. In this coloring either dg(v) > s(m; + 1) or dg(v) > n+2k+ 1.
Assume the first case occurs. If e is colored red, then F' must contain
a red Fi, and hence F — v contains a red H = |J;; S(m;) for some j.
Since v satisfies dp(F — €) > s(my + 1), there is a red S(m;) centered at v
which is vertex disjoint from H. This implies that F — e contains ared Fy, a
contradiction. A similar argument yields a contradiction in the case when v
satisfies dg (f—e) > n+2k+1. This proves that A(F) < s(m;+1)+n+2k+1.

Each edge e of F' is incident to a vertex of degree at least m,. Again note
that F — e has a (F}, F3)-good coloring. Thus, if ¢ is colored red, F must
contain a red F; with e in F;. Therefore one end vertex of e must have
degree at least m,.

Before giving the final argument, we will make two observations about the
number of vertices of F of degree at least m;. If all the edges of F incident
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to a vertex of degree at least m; are colored blue and the remaining edges
are colored red, then clearly there is no red Fj. Since there must be a blue
F,, there are at least k + 1 vertices of degree > m;. However, there are at
most (k+s)(s(m1 +1)+2k+n+1)? vertices of degree > m, . The following
argument verifies this. Note that S(m;+n—1)U(s+k—1)S(m;) — (F1, F2)
(in fact it arrows (sS(my), F2)). Select the maximum r such that F 2
S(m;+n—1)UrS(m;) = L. Then r < s+k—1 and every vertex of degree at
least m; must be adjacent to a vertex in L. Hence the number of vertices of
degree at least m; is at most |V (L)|-A(F) < (k+s)(s(m1 +1)+2k+n+1)2

Let L' be the subgraph of F induced by those edges which are incident
to a vertex of degree at least m;. Then L' D L, and L' has at most (k +
s)(s(m1 +1)+2k+n+1)3 edges. By assumption there is an edge in F' not
in L'. Select such an edge, say e = zy, such that £ = maz{d(z),d(y)} is a
minimum. Hence m, < £ < m; and there is a p such that mp, > £2> my4;.

Consider the graph F —e and fix a good coloring of this graph. We claim
that F' — e contains a red |J}_, S(m;) and a blue S(n). The first assertion
follows immediately. If e is colored red, then F contains a red F; using e.
But e is not in any S(m;) for ¢ < p. Thus F — e contains a red |J]_, S(m;).
To verify the second assertion, assume that F — e contains no blue S(n).
Select all vertices v, vz...,v, (a could possibly be 0) in F' of degree at least
(m1 + 2)s + n, and then select pairwise vertex disjoint stars Sg41,...,5
each with m; edges which are disjoint from {v;, v2,...,v,}. Assume that bis
maximum with respect to these properties. Since A(F) > m;+n—1, b > 1.
Also, since there is no blue S(n) in F — e, there is a red |Ji_, S(m;) (or
Ui-1 S(mu) if s < b). Therefore b > s. Consider all vertices w in F and not
in {v1,v2,...,9.} U U:.= a+1 57 which are of degree at least m;. There are
at least (k+ 1 — (m; + 1)s) such vertices, and the maximality of b implies
that each w is adjacent to vertex of some S; (a + 1 < j < b). Therefore,
some S; contains a vertex of degree at least

(k+1—=my +1)s)/(my +1)s > s(my +2) +n.

This contradicts the choice of vy, v3,...v, and hence, F — e contains a blue
S(n). Thus, we have verified that F — e contains a red |Ji_, §(m1) and a
blue S(n). Denote the union of these two graphs by H.

Recall that each edge of F' is incident to a vertex of degree at least £, and
A(F) < s(my + 1) + 2k + n + 1. Because of the large number of edges in
F — e, we can find a (k+ s — p)S(£) which is vertex-disjoint from H. Since
(k+s—p)S(&) — ((s—p)S(£), kS(1)) and £ > n; for j > p, F — e contains
either a red F; of blue F;. This contradiction completes the proof. B

Lemma 5 and the remark that followed it, along with Lemmas 2, 3 and 4
and Theorems A, B and C, complete the proof of Theorem 1. Lemma 5 is a
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surprising result, since it was conjectured that if R(Fy, F3) is infinite, then
the addition of isolated edges to either Fy, or F, would leave the Ramsey
class infinite. Lemma 5 proves that this is not true in general.

Remark: If R(F, F) is finite, then R(Fy, (F, U S(1))) is also finite.

This may be verified as follows. Let Fj = F, U S(1) and assume that
R(F1, F3) is finite but that R(Fy, F}) is not. Let F' € R(Fy, F}), and thus
F' 5 FeR(F1, F;). Without loss of generality we can assume that F' has
many more vertices than F. Denote by A the vertices of F' which are not
adjacent in F' to any vertex of F. Recall that any vertex in R(F, F3) has
bounded degree, implying that there are many vertices in A. Select an edge
e = zy with z,yeA subject to the condition that ¢ = max{d(z),d(y)} is a
minimum for all such edges.

The graph F’ —e has a good (Fy, F}) coloring. In this fixed good coloring
there must be a blue F5, in fact a blue F> C F. Since there is no blue Fj, all
of the edges with both end vertices in A must be red. If the good coloring
of F' — ¢ is extended to a coloring of F' by coloring e red, then there is a
red copy of Fy, where the edge e is in some S (m;) with ¢ > m;. Since 4 is
very large there is a star with ¢ > m, edges whose vertices are contained
in A and which is vertex disjoint from the red copy F,. This implies that
F' — ¢ contains a red Fy, a contradiction.

If one could determine the smallest ko such that R(Fy,S(n) UkeS(1)) is
finite, then R(Fy, S(n)UkS(1)) is finite if and only if k > ko. However, the
precise determination of ko appears to be very difficult (ko > 1 by a result
in [2]).
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