Addendum to: On The Construction of Color-Critical Linear Hypergraphs
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Abstract. Itis shown that there exists a 4-critical 3-uniform linear hypergraph of order
m for every m > 56

Let n and r be positive integers, n > 3, » > 3. Denote by M*(n,r) the
least integer such that for every m > M*(n,r) there exists a linear (m,n,7)-
graph; that is, an r-color critical n-uniform hypergraph of order m any two edges
of which have at most one vertex in common. That M*(n, r) exists was shown
in [1]. Only one value of M*(n,r) is known, namely, M*(3,3) = 9. In [3]
we showed that M*(4,3) < 51 and M*(3,4) < 94. In this note we show that
M*(3,4) £ 56.

Let § = {m : there exists a linear (m, 3,4)-graph}. Rosa [6] proved that
the 3-graph whose edges are the lines in PG(4,2) is 4-chromatic and Liu [5]
verified that it is vertex-color-critical, so that 31 € S. In [1], [2] and [3] various
constructions of color-critical linear hypergraphs are given and from these and the
fact that 31 € S it is deduced that m € S for all m > 94. Our improved bound
is obtained from these general constructions and the following facts:

Fact 1. The cyclic Steiner triple system of order 25 with base triples {1,2,4}, {1,
3,17}, {1,6,12}, {1,8,18} is 4-chromatic and vertex-color-critical. It thus contains
a linear (25,3,4)-graph, so that 25 € S.

Fact 2. The cyclic Steiner triple system of order 33 with base triples {1,2,4},
{1,5,15},{1,6,14}, {1,7,19}, {1,8,17}, {1,12,23} is 4-chromatic and vertex-color
-critical. It thus contains a linear (33,3,4)-graph, so that 33 € S.

That the graph described in Fact 2 is 4-chromatic was decided by de Bran-
des, Phelps and Rddl [4]. We also verified this by computer and now show that
it is vertex-color-critical. Since the system is cyclic it suffices to exhibit a 3-
coloring of the subgraph obtained by deleting the edges containing the vertex 1.
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The following are color classes of such a coloring: {2,3,4,9,13,16,19,27,29,33},
{5.6,7,14,15,18,21,22,25, 26}, {8,10,11,12,17,20,23,24,28,30,31,32}.

We verified, also by computer, that the graph described in Fact 1 has no 3-
coloring. The following are color-classes of a 4-coloring: {123,6,7,8,11},
{4,20,23,24,25}, {5.9,10,13,14,15,19}, {12,16,17,18,21,22}. Thus the graph is
4-chromatic. We also verified that the graph is vertex-color-critical. Since the sys-
tem is cyclic it suffices to give a 3-coloring of the subgraph obtained by deleting the
edges containing the vertex 1. Such a3-coloring is given by: {2,3.49,10,11,22,25},
{5,12,14,16,18, 19,20,23}, {6,7,8,13,15,17,21,24}. That the graph in Fact 1 is 4-
chromatic is also given in [4], but there is an error in the description of the graph,

We now show how to construct such graphs of order m for 56 < m < 93.
The general constructions referred to are those given in the proof of Theorem
2 of [3]. In Construction 1 take ¢ = 3, my = ma = m3 = 25 andt €
{7,9,10,11,...,20}. This shows that 80,82,83,84,...,93 € S. If we take
m; = mp = ms = 25 in Constructions 4,5,6,7,8 we find, respectively, that
76,77,78,79,81 € S. In Construction 2 take m; = 33, mz = 31 and r = 11.
This shows that 75 € S. If, in Construction 2, we take m1,mz € {25,31} and
r € {7,10,11,12}, wefind that 57, 60,61,62,63,66,67,68,69,72,73,74 €
S. Finally, in Construction 1 take ¢ = 2, m1, mz € {25,31} andt € {7,9,10}.
This shows that 56, 58,59,64,65,70,71 € S. Thus M*(3,4) < 56. Note that
Fact 2 is used only once; namely, to show that 75 € S.
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