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Abstract. Three types of graphs are investigated with respect to cordiality, namely,
graphs which are the complete product of two cordial graphs, graphs which are the
subdivision graphs of cordial graphs, and cactus graphs. We give sufficient conditions
for the cordiality of graphs of the first two types and show that a cactus graph is cordial
if and only if the cardinality of its edge set is not congruent to 2 (mod 4).

Introduction

Cordial labelings of graphs were introduced by Cahit [2] as a weakened ver-
sion of the apparantly less tractable graceful labelings (sec[1]) and harmonious
labelings[6]. Cahit showed, among other things, that all trees are cordial (i.e., can
be cordially labeled), that a length-n cycle, C,, is cordial if and only if n # 2
(mod 4), that an Eulerian graph G is not cordial if |E(G)| = 2 (mod 4), that
the complete graph on n vertices, K, is cordial if and only if n < 3, and that the
complete bipartite graph on m and n vertices, K., ,, is cordial for all m,n > 1.
Since Cahit’s paper, various particular types of graphs have been shown 1o be cor-
dial (see, e.g., [8]). In [8] sufficient conditions were given for the direct product of
two cordial graphs to be cordial. This result was generalized in [9] and [10] (us-
ing a different method from that of [8]) for a large class of graphs built from other
cordial graphs using any type of what is called a NEPS operation. In parts 1 and
2 of this paper, we invesigate graphs built from cordial graphs using operations
which do not fall in the category of NEPS operations, namely, the operations of
complete product and subdivision. Subdivision graphs are a subclass of bipartite
graphs; hence, investigation of this class of graphs extends knowlege about the
cordiality of bipartite graphs. Cahit’s result mentioned above was previously the
only result known about this subject.

Cahit’s result on cycles and Eulerian graphs raises the question of whether
or not a planar Eulerian graph is cordial if and only if |E(G)| £ 2 (mod 4).
There is no apparant rcason to think this might be true, yet there is no known
counterexample. (Note that there are non-planar, non-cordial Eulerian graphs with
edge sets whose cardinality is not congruentto 2 (mod 4); K7, for example.) In
part 3 of this paper we investigate a type of Eulerian planar graph, the cactus
graph , and show that a cactus graph is cordial if and only if the cardinality of its
edge set is not congruent to 2 (mod 4).

ARS COMBINATORIA 31(1991), pp. 127-138



Definitions for Cordial Graphs

All graphs in this paper are finite, loopless, and without multiple edges. A labeling
of agraph G = (V, E) is a mapping f: V — {0, 1}. The mapping f induces an
edge-labeling f*on G, f*: E — {0, 1}, defined by f*((u,v)) = |f(w) — f(v)]
forall (u,v) € B. Letvy(0) = {v € V|f(v) =0}, vp() = {v € Vif(v) =1},
es(0) ={e€ E| f*(e) = 0},andesp(1) = {e € E|f*(e) = 1}.
(We will omit the subscripts f and f* when the context makes it clear.)
Cahit’s original definition of a cordial labeling is the following:

Definition 1a. A labeling f of a graph G is cordial if |v(0) — v(1)| < 1 and
le(0) —e(1)| < 1.

A graph G is cordial if it admits a cordial labeling.
Several equivalent defintions are possible. In particular, in this paper we will
use the following one. Let nearly equal mean differing by at most one.

Definition 1b. A graph G is cordial if there exists a partition of V(G) into two
nearly equal subsets, Vi and Va, such that the set of edges with both endpoints in
Vi or both endpoints in V, is nearly equal in size to the set of edges which have
one endpoint in Vi and one endpoint in V3.

(The proof of the equivalence of definitions 1a and 1b is left to the reader.)

Thus, if G is a cordial graph, such a partition exists. We will call edges with
both endpoints in V; or both in V; internal edges and edges with one endpoint in
Vi and the other in V3 spanning edges. For a cordial graph G, (with implied the
partition of V(G) into V; and V,) N(G) will denote the number of internal edges
in G and S(G) will denote the number of spanning edges in G.

Note that e(0) in definition 1a corresponds to internal edges in definition 1b
and that e( 1) in definition 1a corresponds to spanning edges in definition 1b.

Throughout this paper we will assume that [V;| > |V2|. We note that there are
six different “types” of cordial graphs, in the following sense. Letan (1, j) -cordial
graph be a cordial graph such that, under some cordial labeling, [Vi| — |V2| = 4
and e(0) — e(1) = j. Note thati € {0,1},and j € {—1,0, 1}. Note also thata
graph with an odd number of edges may be both an (1, 1) - and an (7, —1) -cordial
graph.

More generally, we will call a graph G an (¢, j) graph if there exists a partition
of the vertex set V(@) into two sets V; and V; such that [Vi| — |V2| = 4 and
¢(0) — e(1) = 7. In this more general case, i and j need not be in the sets {0, 1}
and {—1,0,1}.
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Part 1. The Complete Sum of Two Cordial Graphs

Definition 2. Let G = (V,E) and H = (W, F') be two graphs. The complete

product of G and H,GVH, is a graph G = (V,E), where V. = V U W and
E=EUFU{(v,w):veEV and w € w}.

In other words, GVH is obtained from taking a copy of G, a copy of M, and
connecting every vertex of G with every vertex of H. (Note that ‘V’ is commuta-
tive.)

The complete product has been studied extensively in the literature, most
often with respect to the question of charactarizing those graphs which are not the
complete product of smaller graphs. (See [4] where such indecomposable graphs
are called elementary.)

Let G and H be cordial on n and m vertices, respectively. Let V) and V;
and W, and W> be the implied partitions of V and W. Let V, = V; U W, and
V2 = V2 UW, be a partition of V. We may now speak of internal and spanning
edges in GVH.

Lemmal. ||[V,|—[V|| < 1.
Proof: V1| = [2] + |2]. [V2| = [3] + [$]. The result follows from an

examination of the four cases of n or m even or odd. [ |
Lemma 2.
N(GVH) = | 5| + N(G) + N(H) M
and
8(GVH) = [ZH] + 8(6) + 8() @

Proof: Edges intcrnal to V, consist of all edges internal to Vi, all edges internal
to W2, and the [V1|- W2 | = [} 37 .| 2] edges connecting vertices in V1 to vertices
in W, . Edges internal to V, consist of all edges internal to V3, all edges internal
to Wy, and the |V, | -|W1| = | 2] - [ 3] edges connection vertices of V; to vertices
of Wi. Since [2] - | 2] + |3] - ["‘] | 3 |, expression (1) follows.

Spanning edges in GVH consist of the spanning edges in G, the spanning
edges in M, the |v;| - |[W,| = [2] - [}] edges connecting vertices in V — 1 t0
vertices in W, and the |V | - [Wa| = | 2] - | ] edges connecting vertices in V;
to vertices in W5. Since [2] - [Z] + [ 2] - ["‘J = =], expression (2) follows.

|

From these lemmas, we get Theorem 1, the main result of this section. Let
‘@’ indicate exclusive-or.
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Theorem 1. Let G and H be (a,b) and (c, d) cordial graphs, respectively. Then
GVH isan (e, f) = ((a® c),(—ac+ b+ d)) graph.

Proof:

e= V1| —|V2||
n n m m
-|[z1- 151+ 3] - [Z|
0, if nand m are both even or both odd;
- { 1, if one of nand m is even and one is odd.

=a®c

)

f=N(GVH) - S(GVH)

= | 5]+ M@ + N0 - [TE] - 5(9) - ()

-5 5] e
_ {—-1+ b+ d, ifnandm arebothodd

O+b+d, ifnormiseven.
=—ac+b+d

Theorem 1 (as summarized in Table 1) yields the following corollaries.

Corollary 1. Let G be a (0,0) cordial graph and H be an (1, j) cordial graph.
Then GVH and HVG are both (i,7) cordial graphs. [}

Corollary 2. The class of (0,0) cordial graphs is closed under ‘V’. |

Since Ky, (the complete bipartite graph on m and n vertices) is KnVK,
(that is, m isolated vertices and = isolated vertices) the following corollary, first
proved by Cahit [2], follows.

Corollary 3. K., is cordial for all integers m and n. |
For the next theorem, we need three results of Cahit [2].

Lemma 3 [Cahit]. C, (the cycle on n vertices) is cordial if and only if n % 2
(mod 4).

Lemma 4 [Cahit]. An Eulerian graph on m vertices is not cordial if |E| = 2
(mod 4).

Lemma 5 [Cahit]. K, (the complete graph on n vertices) is cordial if and only
ifn<3.
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Type of G Type of H Type of GVH

(a,b) (c,d) (e, f)
0,-1) ©,-1) (0,-2) **
©,-1) 0,0) ©,-1)
©,-1) ©,1) (0,0)
0,-1) 1,-1) (1,-2) **
©,-1) (1,0) (1,-1)
0,-1) (1,1) (1,0)
0,0) 0,0) 0,0
(0,0 0.1 ©,1)
0,0 (1,-1) (1,-1)
0,0) (1,0) (1,0
0,0) (1,1) (1,1)
0,1) o,1) (0,2) **
©,1) (1,-1) (1,0)
©.1) (1.0 (1,1)
©,1) (L) (1,2) **
(1,-1) (1,-1) (0,-3) **
(1,-1) (1,0 (0,-2) **
(1,-1) (L.1) ©.-1)
(1,0 1,0) 0,-1)
(1,0) (1,1) (0,0)
(1,1 (1) 0,1)

Table 1. The type of GVH

Theorem 2. Let A denote the class of (1,j) cordial graphs and B denote the
class of (k,l) cordial graphs for

((4,7),(k, D) € { ((0,-1),(0,-1)), ((0,-1),(1,-1)), ((0,1),(1,1)),
((l)_l))(])—l)) ) ((11—1))(110))}

Then there exist G € A and H € B such that GV'H is not cordial,
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Proof: We offer the following table of counter-examples:

Type of G Type of H G H GVH  Reason GVH
is not cordial
(0,-1) (0,-1) K K> K4 Lemma 5
(0,-1) (1,-1) K> Ks Ks Lemma 5
(0,1 0,1 CsUK; CsUK; (seebelow) Lemmad4
(1,-1) (1,-1) K3 K3 K Lemma 5
(1,-1 (1,0 K3 K K4 Lemma 5

Table 2. Counterexamples

Note that (Cs U K1) V(Cs UK ) yields a connected graph with every vertex
of even degree (6 or 8) and with 46 edges. Hence, it is Eulerian with |E| = 2
(mod 4). (The cordiality of Cs U K is obvious in light of Lemma 3.)

Thus it is open whether or not for all (0, 1) cordial graphs G and forall (1, 1)
graphs H, GVH is cordial. Note that such a graph is never Eulerian, nor is it ever
a complete graph.

Part 2. The Subdivision Graph of a Cordial Graph

Let G be a graph. The subdivision graph of G, S(G), is the bipartite graph ob-
tained from G by replacing each edge of G with a path of length 2, or, equivalently,
by inserting an additional vertex into each edge of G. (Subdivision graphs are dis-
cussed in [4].)

Let G be acordial graph with V (G) partitioned into V; and V, under a cordial
labeling. Let E; denote the edges internal to Vi, E; denote the edges internal to
V4, and Eg denote the spanning edges. The following theorem offers conditions
for when the subdivision graph of a cordial graph is cordial.

Theorem 3. Let G be acordial graph. The S(G) is cordial if both |E1 | and | E, |
are even or both are odd.

Proof: Let [m| mean ‘[m] or | m]’. (In other words, there is a choice involved.)
Let | m] indicate | m| if [m] has been chosen to be [m] and [m] if [m] has been
chosen to be |m|. (This notation is taken from the usual +, F notation.)

Note that S(G) has |V (G)| + |E(G)| many vertices and 2 - | E(G)| many
edges. In forming S(G), let Vg, refer to those vertices which were inserted along
an edge of B, Vg, to those which were inserted along an edge of Ej, and Vg, to
those which were inserted along an edge of Es.

We now describe a partition of V = V(S(G)) into V; and V' and the in-
duced edge sets, Ey, E,, and Eg. We first assume that |E; | > |E;|. In this case,

V1 consists of V1, []%lj vertices of Vg, (arbitrarily chosen), []%-lj vertices of
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Vg, (arbitrarily chosen), and [LE%‘-[J + [E‘J%I&[J vertices of Vg, (arbitrarily cho-
sen). Vz =V - 71. Hence,

72l - 1721 = (at- )+ ([ 1521 - | F2el]) o (2L - | 221)
_ <[|E1|;|32|J _ llE‘llglEzq)'

This quantity can always be made an elementof {1, 0, — 1} by correct choices
of ceilings and floors. The case when |Ez| > |Ey| is similar.

Let the vertices of V; and V, be called 1-vertices and the vertices of V5 and
V2 be called O-vertices. Note that introducing a new 1-vertex along an edge in
E; or introducing a new 0-vertex along an edge in E; yields 2 new 0-edges, and
introducing a new O-vertex along an edge in E; or introducing a new 1-vertex
along an edge in E; introduces 2 new 1-edges. Introducing a new 0-vertex along
an edge in Ejg introduces 1 new 0-edge and 1 new 1-edge, as does introducing a
new 1-vertex along an edge in Eg. With this in mind, it is not hard to see that

Bl B - este2 (| 571« [ ) o2 2]

=1_ |E2|] ’El|_|E2|] |E2|]
|Es|—|ES|+2<l2 +_ 5 +2 |5,
and

) = | B2 |E2]]
(B + Ba]) - B =2 ([ 122 - | I
|E1| - | B2 |E1|'“|Ezl.’
+2 <[ 5 - 3
B2l | _ @1
+2 ([ > > .
S(G) is cordial if the above expression, through correct choice of ceilings

and floors, can be made to be an element of {—1,0,1}. Itcan be if | E1| and | E, |
are both even or both odd. The case when |E;| > |E;| is similar. |

If one of |E1| and | E, | is even and the other is odd, S(G) cannot be guar-
anteed cordial. For the case of |E | odd and | E; | even, this follows from the fact
that S(C3) = Ce and Lemma 3 above. For the case of |E, | even and | E; | odd,
we have no counterexample.
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Part 3. Cactus Graphs

Definition 3. A k-cycle cactus graph, My, is a connected graph composed ofk
edge-disjoint cycles, c1, ..., ¢k, such that for all pairs if cycles c; and ¢j, i # J,
ciNc; is either empty or consists of a single vertex only. Furthermore, ifc;Nc; = v
andc;Nc=w,i# j# 1, thenc; Nc, # impliesv = w.

A cactus graph may be thought of in the general form in figure 2 below, where
eight cycles are pictured.

Figure 2. An eight-cycle catcus graph.

A catcus graph is necessarily planar and Eulerian. We will call a vertex con-
tained in more than one cycle an articulation point . A cycle containing only one
articulation point will be called an outer cycle. There must be at least one outer
cycle in every cactus graph.

We will show that a k-cycle cactus graph, My, is cordial if and only if | E( M) |
# 2 (mod 4). This in turn will imply that M is cordial if and only if k +
[V(Mi)| # 3 (mod 4).

We first need three lemmas.

Lemma 6. A cycle of length n, C,, forn=2 (mod 4), isbotha (0,2) anda
(0,—2) graph.

Proof: The two labelings are given in figure 3 below.

In the labeling on the left each spanning edge is matched by the interior edge
preceeding it, then two spanning edges complete the cycle fora (0, —2) labeling.
(Vertices in V; are black and vertices in V3 are white.) The labeling on the right
is derived from the labeling on the left by switching vertex v+ from Vj to V
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Va Va
VS‘ Vk
A Vi
Vvt V&k
Vikaz Vag at

Vakaz
Figure 3. A (0,—2) (left) and a (0,2) (right) labeling of
C, forn=2 (mod 4)

and by switching v4 4.2 from V; to V;, resulting in completing the cycle with two
extra interior edges for a (0, 2) labeling. 1
Lemma7. C, forn=1 (mod 4) isbotha (1,1) and a (1,-3) graph.
Proof: The labelings are given in figure 4.

Vel

Figure 4. A {1, 1) (left) and a (1, —3) {n1ght) labeling of
C,forn=1 (mod 4).
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Lemma8$. C, forn=3 (mod 4) isbotha (1,—-1) anda (1,3) graph.
Proof: See figure 5.

Figure 5. A (1,—1) (leftyand a (1,3) labeling for
C, forn=3 (mod 4).

These lemmas lead to the following theorem. Let ', denote the class of all
k-cycle cactus graphs.

Theorem 4. For all k > 1 the following is true of all G € T’y for some i €
{0,1}:

1) if |[E(G)| =0 (mod 4) then G admits an (4,0) cordial labeling.

2) if |[E(G)| = 1 (mod 4) then G admits an (i, 1) cordial labeling and an
(i, —-3) labeling.

3) if |E(G)| = 2 (mod 4) then G admits an (1,2) labeling and an (i, —2)
labeling.

4) if |[E(G)| =3 (mod 4) then G admits an (3, —1) cordial labeling and an
(1,3) labeling.

Proof: The proof is by induction on k.

k = 1 : This is Cahit’s theorem [2] along with Lemmas 5, 6, and 7 above.

ki k+ 1:LetG € I'ts1. Delete one outer cycle, Cy, of G to form G el
We now consider the sixteen cases which are the possible values of the 2-tuple,
(n (mod 4),|E(G)| (mod 4)). The results are summarized in Table 3 below.
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The idea is that if C,, is an (i, j) graph and G is a (k,[) graph, then C, can be
re-attached to G to re-form G as an (i + k, j + 1) graph.

The inductive hypothesis gives appropriate labelings for C, and G.

Note that we need not consider |V (G)|, since i + k can always be made an
element of {0, 1}, if need be by reversing the roles of V; and V3 in C,, or G.

n e(0)—e()) |BO| &0 —e()) [E@]| e(0)—e(l)
(mod 4) for C, (mod 4) for G (mod 4) forG

0 0 0 0 0 0

0 0 1 lor-3 1 1or-3
0 0 2 2 o0r-2 2 2 o0r-2
0 0 3 3or-1 3 3or-1
1 lor-3 0 0 1 1or-3
1 1or-3 1 1or-3 2 2 or -2
1 lor-3 2 20r-2 3 3or—-1
1 lor-3 3 3or-1 0 0

2 2o0r -2 0 0 2 2o0r -2
2 2o0r-—2 1 lor-3 3 3or-1
2 2or-2 2 2or-2 0 0

2 2or-2 3 3or-1 1 lor -3
3 3or—1 0 0 3 3or-1
3 3or-1 1 lor-3 0 0

3 3or-1 3 20r-2 1 lor-3
3 3or-1 3 3or-1 2 2o0r -2

Table 3. Labelings for C,,G, and G

Recall that Cahit [2] showed that for an Eulerian graph, G, | E( Dl =2
(mod 4) implies that G is not cordial. Combining this with Theorem 4 above, we
get,

Corollary 5. A cactus graph, M, is cordial if and only if |E(M)| # 2 (mod 4).
|

The following corolary relates the cordiality of a k-cycle cactus graph, Mg,
to k.

Corolary 6. The k-cycle cactus graph, My, is cordial if and only if k+ [V(Mp)| £
3 (mod 4).

Proof: Let |[V(My)| = nand |E(M)| = m. Euler’s formula says that m =
n+ f — 2, where f is the number of faces in My. In My, f = k + 1. Hence,
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m = n+ k — 1. Combining this with corolary 5 we get that M} is cordial if and
onlyifn+ k—1#2 (mod 4). [ |
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