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Abstract. In this paper we examine bounds on | N(z) U N(y)] (for nonadjacent pairs
2,y € V(G)) that imply certain strong hamiltonian properties in graphs. In particular,
we show that if G is a 2-connected graph of order n and if for all pairs of distinct
nondajacent vertices z,y € V(G),

a. [N(z) UN(yp)| > z—‘s*i, then G is pancyclic.
b. |N(z) UN(y)| > n—tand§(G) > t,then G is hamiltonian.
c. |N(z) UN(y)|>n—2,then G is vertex pancyclic.

Section 1. Introduction

Adjacency conditions have long been fundamental tools in the study of graph
properties, especially those of paths and cycles. Recently, several papers have ex-
plored the effects of various neighborhood conditions on a variety of graph prop-
erties. In [1], the extremal values for the size of a matching, length of a path and
length of a cycle were examined; while in [2] and [3], hamiltonian properties were
considered. In this paper we explore the implications of such neighborhood condi-
tions on stronger hamiltonian properties. In particular, we study pancyclic graphs
G (graphs containing cycles of all possible lengths for 3 to |V (G)|) and vertex
pancyclic graphs (graphs for which every vertex lies on a cycle of each length [,
3LV

We denote a path or cycle containing ¢ vertices as P; and C; respectively. The
cycle C; will sometimes be called a t-cycle. We also denote the minimum degree
of a vertex in a graph G as §(G) and the distance between vertices u and v as
d(u,v). The neighborhood of a vertex v in G is defined to be

N(v) = {u|]vu € E(G)},
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while the closed neighborhood N[ v] is defined to be
N[v] = {v}UN(v).

We say that a graph G satisfies the condition NC(G) > s, if for all distinct
nonadjacent vertices z,y € V(G), [N(z) UN(y)| > s. When no confusion can
arise we will abbreviate this to NC > s. Terms not found here can be found in
[4]. With these definitions in mind, we state the following result from [2].

Theorem A. ([2]) If G is a 2-connected graph of order n > 3 with NC(G) >
2=l then G is hamiltonian.

We shall also find the following result useful.

Theorem B. ([5]) If G is graph of order n with the property that §(G) > 3+ 1,
then G is panconnected (that is, in G, each pair of vertices x, y is joined by a path
of each possible length 1, where d(z,y) <l<n-1.)

Section 2. Main Results
We begin with the following Lemma.

Lemma 1. Let G be a 2-connected graph of order n > 12 such that NC >
25 andlet t bean integer satisfyingt > %2 . Further, let Cy : 70,71, , Tt-1,
zo be a t-cycle in G. Then C; contains at most two vertices with the property
that their degree in H =< V(C;) > is two. Further, if there are two such ver-
tices, then they are adjacent along C;. Hence, C; contains vertices t;, Ti+2, Ti+a

(subscripts taken mod t) such that each has at least three adjacencies on Cs.

Proof: If there exist three or more vertices of degree 2 in H, then there is some
pair, say z, y, that are nonadjacent in H. Thus,

[INe(z) UNg(y)| < n—t+4
2n+ 2

<n—(

_n+10
=3

Y+4

a contradiction. Clearly, then if there are only two vertices of degree two in H,
they must be adjacent and C; has the desired properties. |

In what remains, we denote the graph of Figure 1 as F'.

Lemma 2. Suppose that G is a connected graph of order n > 8 with §(G) >
%1 and NC(G) > 285, Then G contains the graph F as a subgraph.

Proof: Suppose G contains a triangle T : z, y, z. Then each of these vertices has
at least % adjacencies off T'. Thus, some pair, without loss of generality say z, y
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Figure 1. The graph F.

must have a common neighbor w. If wz € E(G), then some pair of z,y, z,w
must have a common neighbor, producing F. If not, then consider the neighbors
N of w and z other than {z,y,z,w}. Since [N| > 2%, one of z or y has a
neighbor in N, forming the subgraph F'.

Now to see that G must contain a triangle, let zy be an edge of G. If z and
y have a common neighbor we are done. Otherwise, let N; = N(z) — {y} and
N, = N(y) —{z}. If there is any edge between two vertices in N, then a triangle
is formed. (A similar statement holds for N,..) If both N, and N, contain no edges,
then the minimum degree condition implies that there is an edge from N to N,,.
Hence, a 4-cycle C is formed. Now, by considering the neighborhoods of the two
pairs of nonadjacent vertices on C, we see that two consecutive vertices of C must
have a common neighbor, and hence a triangle is formed.

Thus, G contains a triangle and thus, the graph F is a subgraph of G. §

Theorem 1. If G is a 2-connected graph of order n > 19 and NC(G) > 2%,
then G is pancyclic.

Proof: Note by Theorem A that G is hamiltonian. Next, suppose that the result
fails to hold and suppose that ¢ is the maximum integer (4 < t < m) such that
for every s > t, the graph C, is a subgraph of G (denoted C, C G), but that
C,_1 is not a subgraph of G. Since G is hamiltonian, but by assumption G is not
pancyclic, such a t must exist.
Claim 1: Under these conditions, t < 242

Assume to the contrary that t > 2%2. Then

2n+2 -2
V(G -Cy| < n— =22
3 3
Since n > 19, we see thatt > 14. Now, by Lemma 1, we know that there exists
three vertices z;, Ti+2, Ti+4 ( subscripts taken mod t)on G; : zo,T1,- -, Tt-1,

zo and that each of these vertices has at least three adjacencies on C;. Without
loss of generality say these vertices are =1, z;—; and z,_3. Suppose further that x;
is the closest adjacency along C; of z; in the set V(C:) — {zo,z2}. Relabel C;
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if necessary so that 1 < t/2. This relabeling is possible by Lemma 1. Thus, we
see that

N(.’l?l) n {.'113,174,- o yml'—l} = ¢
By our choice of z; and z;_;, z:—1 must be adjacent to some z; € V(C),
where j #0,t —2.

Case 1: Assume that N(z:—1) N {Z¢—3,Tt—4,  + ,Tis1} F @.
Consider the cycle

CQ:IO,II;"' yLiy 3 Tjy 00, Tt-1, L0,

and recall that the shortest chord from z; is the edge z; z;. Also, suppose that the
shortest chord from x;_; into {z¢_3,--- ,Zi+1} iS ;_1z;. We consider the path
P;_1 = C; — =z along with the additional edges z;z; and z;_;z;. Note that if
a shorter chord is contained from some potential end vertex, say x;.;, (since it is
also the initial vertex of a path of ordert — 1)tozx where (j +3 < k<t -1),
then we can reorder the vertices to obtain a new path P;_; with shorter end chords.
Continuing in this manner, we can constructa path P = P,_; with shortest possible
end chords. We also note that neither end chord forms a triangle or the graph C;_;
would be contained in G, contradicting our choice of ¢.
Define the sets

N = {Np(zl) UNP(I,‘_l)} and
N~ ={zt € V(P)|z+1 € N}.

Note that |[N| = |[N~| and that
N~ N(Np(zt-1) UNp(zjs1)) C {zjs2,Ti-3}.
Now, for N1 = Np(z:-1) U Np(z;+1) we have that

2n+ 5

|N1|2 —(n—t+1),
2n+5
IN| > 2252 (n—t+1), and
IN[+|Ni| < ¢
Hence we see that
2n—4
tg 3 )

a contradiction. Thus we conclude that ¢ < 252,
Case 2: Assume that N(z¢—1) N {z¢-3,Tt-a, "+ ,Ti+1} 7 ¢-
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Let z; be the endvertex of the shortest chord from z;_,, and hence, z; comes
from the set

{z2,-- ,zi2} U {zi}.

Now assume that
N(z-3) N{z¢-5,-- ,I;'+1} = ¢.

Find the minimum subscripted adjacency, say zj of z;_3, where 1 < k < 4. Then
neither z,_3 nor x;_; are adjacent to zx_1. From the fact that

2n+5
3 )

[IN(zt-1) UN(z¢-3)| >

we see that

2n+5
3

<(n=t)+(@—-1D+3=n—-t+i+2.

Then since 1 < t/2, we see that

t _ n+1 2n+2
= dh , ,
2 < 3 and hence, t< 3

a contradiction. If on the other hand,

N(z-3) N{zt-s5,- -, Tj+1} 7 &,

then we repeat Case 1 with ;_; = z; and ;3 = 7.

Thus, Claim 1 is verified.
Claim 2: §(G) > %L

Next, suppose that z is a vertex of minimum degree §(G) = 8. Consider the
graph H = G — N[z]. Then |[V(H)|=n—(8+ 1). Also,ify € V(H), then z
and y are nonadjacent and we see that §( H) > 225 — §. Then, by Theorem B,
the graph H is panconnected provided

8>n—(6+1) .

8(H) = > 5 1.

2n+5
3

That is,

n+7
8.
3 2
Thus, if §(G) < % the graph H is panconnected. If this is the case, select
vertices o and b in H with a adjacent to some u; in N(z) and b adjacent to some
u in N(z). This can be done, since G is 2-connected. Then using z,u;,u2,a,b
and the vdriety of possible paths connecting ¢ and b in H, we obtain cycles of
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lengths6ton— (6+ 1) + 3=n— 6 + 2. Note that H contains the small cycles
oflengths 3,4,.-- ,n—6—1.

Now, sincet —1 < 2%=L and § < %7, thent — 1 < n— §+ 2; hence, we see
that C;_, is contained in G.

Thus, we see that § > 2 and the claim in proved.

Next, by Lemma 2, we know that F' is a subgraph of G. Further, suppose F is
labeled as in Figure 1.

Let P, be a maximum path through F' with initial vertex y and terminal vertex
z. That is, the path P, begins at y, eventually enters F', say at u;, traverses all of
F, leaving at u;, then extends as far as possible.

Claim 3: The path P; is a hamiltonian path in G.

Suppose instead that P; is not hamiltonian. Let = be a vertex not on P;. Then
since = is not adjacent to y, [N(z) U N(y)| > 3’!;—5 Further, both z and y are
not adjacent to any successor of a neighbor (other than a vertex of F') of z on
P, or a path longer than P; would exist. Butdeg z > 6(G) > (n+ 7)/3 and
NC(G) > %3, and hence,

n-;7)+5<2n+2

IN(z) UN(y)| < n—2 —degz+5<n—2 —( <—

a contradiction. Thus, Claim 3 is established.

Nowlet P, : z1,22,--+ ,u1, - ,u2,- -, Tx be a hamiltonian path through F
as described. Select vertices =, and z, on P; such that the subpath

P:zrlzr+1,"' 1y Id = Uy, Tded = U2, , Ty

contains exactly ¢t — 1 vertices.
Let
Sz, = N(z,) — Np(z,) and let S;, = N(z,) — Np(zs).

Suppose there exist nonadjacent vertices a, b € S;, andletz,, € N(z, )NV (P)—
V(F). Then note that z,,_; ¢ N(a) UN(b) or else the cycle (when m < d)

TryTrely - )zm—lsa( Orb),Is,xs_],"' yU2,U3,Uq, U1, , Ty, Ty

would be a C;_,. A similar cycle exists whenm > d+ 4. Now, if 2 € N(z,) —
V(P) — V(F),then z ¢ N(a) U N(b) or else the cycle

T,,2,a( Or D), Ty, Ty, -+ , U2, U3, Uy, -, Ty
isaCy_. As before, since § > ., we see that this implies that

IN(a) UN(b)| < (n—2) — n+3-7 +5= 2n3+ 2 ,
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a contradiction.

Since a and b were arbitrary nonadjacent vertices in S,,, we see that < S, >
must be complete. Analogously, < S;, > is complete.

Now suppose that there exists some vertex u ¢ V(P) US;, U S;,. Since G is
connected and P, is a hamiltonian path, we may assume without loss of generality
that u is adjacent to some vertex a € S,,. Further, by our choice, it is clear that
uz; ¢ E(G). Now, with an argument analogous to the one just completed, we
can show that

2n+2

3
But this implies that the edge vz, must be present in G; in other words

IN(zs) UN(u)| <

V(G) —V(P) = 8,,US,,.

Now consider a new subpath P, of P; beginning with the vertices of S;, and
following P, until a total of ¢ — 1 vertices are included. Say that x; is the initial
vertex of P, and let z,_; be its final vertex. As before, we consider the neighbors
of z;_, off P,, say S;, , and since n > 19 we can show that < S;,_, > is com-
plete. Further, we can again show that S;, |, = V(G) — V(P,;). Analogously, we
can show that the same set properties holds for the subpath consisting of the final
t — 1 vertices of P;. That is, the path P; has the property that its initial n— ¢ + 2
vertices induce a complete subgraph of G and its final n — ¢t + 2 vertices also
induce a complete subgraph of G. Call these subgraphs K! and K2 respectively.

Sincet — 1 < 22=L then |[V(K')| > B and |V(K?)| > =2%; and since G
is 2-connected, we see that the subgraphs K' and K are joined by at least two
disjoint paths. Thus, it is a simple matter to construct the desired C;_; . Hence, G
is pancyclic. 1

We next turn our attention to a combination of neighborhood conditions and
minimum degree conditions to obtain hamiltonian-type results. We begin with
the following.

Theorem 2. If G is a 2-connected graph of order n and t is an integer such that
8(G) >tand NC(G) > n—t, then G is hamiltonian.

Proof: Suppose that G is not hamiltonian. Let C : z¢, 1, -- - , T, To be acycle
of maximum length in G. Then, there exists a vertex z not in C that is joined to
C by at least two paths disjoint except at z. Say these paths first intersect C at x;
and z; where ¢ < j. Itis also clear that ¢ < j — 1 or a cycle longer than C would
exist.

Suppose that v = z;; and v = z;4+1. Then v and v are easily seen to be
nonadjacent or a cycle longer than C would exist. Now, if 2 € N(z) — V(O),
then v and v are not adjacent to z or again a longer cycle would exist. Further,
if zzx € E(G) and = € V(C), then both v and v are not adjacent to x4, or
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a longer cycle would exist. Hence, for every adjacency of z, there is a distinct
vertex that cannot be adjacent to either u or v. Also, neither u nor v is adjacent to
z. This implies that

IN(w) UN(»)| < n—(8(GQ) + ) =n—t -1,

a contradiction. Therefore, G is hamiltonian. [

Corollary 3. If G is a connected graph of order n and t is an integer such that
8(G) >t—1and NC(G) >n—t,then G is traceable.

Proof: Consider the graph H = G + , that is, the graph obtained by inserting
a new vertex z and an edge from z to each vertex of G. Then it is clear that H
is 2-connected, has order n+ 1, 8(H) > t and NC(H) > n+ 1 —t. Thus,
from Theorem 2 we see that G is hamiltonian. Let C be a hamiltonian cycle of
H. Then, P = C — z is a hamiltonian path of G and hence, G is traceable. 1

The final property we consider is the following: A graph G of order n is said to
be vertex pancyclic if each of its vertices lies on a cycle of each possible length [,
3 < | < n. Using neighborhood and minimum degree conditions, we obtain the
following result about vertex pancyclic graphs.

Theorem 4. If G is a 2-connected graph of order n such that §(G) > 3 and
NC(G) > n— 2, then G is vertex pancyclic.

Proof: We recognize two cases.

Case 1: Suppose that G has connectivity 2. Then let C = {z,y} be a cut set of
size 2. Since 8(G) > 3, we see that each of the (at least) two components of
G — C must contain at least two vertices. Further, suppose that A and B are two
components of G — C. Note that since NC(G) > n— 2, each of A and B will
induce a clique. Without loss of generality we assume that

|4] > |Bl.

With these observations in mind, we now handle the low order cases. Suppose
that n = 4. Then, since §(G) > 3, we see that G = Ky, so clearly G is vertex
pancyclic. If n = 5, then since §(G) > 3, each vertex has at most one nonadja-
cency. But, then G C Ks — e; — ez where e; and ep are independent edges of G.
Now it is easy to see that G is vertex pancyclic.

Ifn=6,then < A >=< B >= K and the vertices z and y are each adjacent
to all vertices of A and B. Now it is again straightforward to see that G is vertex
pancyclic.

If n = 7, then withour loss of generality, let |A| = 3 and |B| = 2. Then the
adjacencies of z and y with B are as before. An analysis of the possibilities with
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A shows in each case that G is vertex pancyclic. A similar approach applies when
n=8§.

Now suppose that n > 9. We observe that degg(z) > 2 and degg(y) > 2.
If this were not the case, we would merely alter the cut set, by replacing either (or
both) z and y by the vertex in B adjacent to them, respectively.

Next, suppose that v and v are vertices of A. If |[A| > 5, then consider the
graphs G — u and G — v, which by induction are seen to be vertex pancyclic. But,
clearly G is hamiltonian, thus we see that v and v lie on cycles of all possible
lengths. Thus, G is vertex pancyclic. .

Now suppose that |A| = 4. Then, for an appropriate choice of vertices u and
v in A, and by again considering G — v and G — v and applying induction, the
result will follow.

Case 2: Suppse that s(G) > 3.

If G has two vertices, say 1 and v which are not adjacent to any vertex of degree
3 in G, then we apply induction to G — v and G — v as before. Thus, the vertices
of degree three must cover all but at most one vertex of V(G). However, in this
situation, we are merely left with an analysis of the low order cases n < 8 and so
G is vertex pancyclic. i

Examples: We now consider several examples showing the bounds or conditions
in the Theorems are sharp.

i. Construct a graph G by taking three copies of K;_; and identifying them at
avertex. The graph G has order n = 3(t—2) + 1 and satisfies NC > n—t,
6 = t—2,and is 1-connected, but not traceable. Thus the minimum degree
condition is sharp in Corollary 3.

ii. Let G be the graph this time obtained by selecting a pair of vertices in
each of three copies of K; and identifying these three pairs. The graph G
has order n = 3(t — 2) + 2 and is clearly 2-connected. It also satisfies
the properties NC > n—t and § = t — 1. However, G is clearly not
hamiltonian. Thus, the minimum degree condition in Theorem 2 is sharp.

iii. Finally, consider the graph G obtained by taking a vertex z of degree t(t <
3) and joining each of the ¢ independent neighbors of z to each vertex of a
Ky ¢—1. This graph has order =, is t-connected and satisfies NC > n—t
and § = t. However, G is not vertex pancyclic.

We conjecture that the conditions of example 3 are best possible, that is, we
conjecture that if G has order n, connectivity ¢ and satisfies NC > n— t and
& >t + 1, then G is vertex pancyclic.
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