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Abstract. In this paper the authors study the vulnerability parameters of integrity,
toughness, and binding number for two classes of graphs. These two classes of graphs
are permutation graphs of complete graphs and permutation graphs of complete bipartite
graphs.

Preliminaries

The vulnerability parameters studied in this paper are integrity, toughness, and
binding number. These vulnerability properties are currently of growing interest
among graph theorists and network designers. They have been studied recently by
many authors on many different classes of graphs. Barefoot, Entringer, and Swart
have found the integrity, toughness, and binding number of trees and powers of
cycles [1,2]. Katerinis and Woodall have found relationships between the binding
number and the existence of k-factors in [10] while Enomoto, Jackson, Katerinis,
and Saito have similarly found relationships between toughness and the existence
of k-factors [6,7]. Results on the binding number of different types of product
graphs have been found by Guichard [8], Kane, Mohanty, and Hales [9], Liu and
Tian [11], Luo [12], and Wang, Tian, and Liu [20,21].

The integrity of a graph G, I(G), was defined in [2] and is defined as I(G) =
min {|S| + m(G — S)}, where the minimum is taken over all subsets S of V(G)
and m(G — S) is the number of vertices in a largest component of G — S. The
toughness of a graph G, t(G) , as defined by Chvital in [4], is defined to be t(GQ) =

min { RIGJS—T)}’ where the minimum is taken over all disconnecting subsets S
of V(@) and w(G — S) is the number of components in G — S. The binding
number of a graph G, b(G), was defined by Woodall in [22] and is defined as
b(@) = min{ ‘L"ﬁ—)—l}, where the minimum is taken over all nonempty subsets S of

V(G) suchthat N(S) # V(G), where N(S) is the open neighborhood of S. The
other measure of vulnerability discussed in this paper is the connectivity of a graph
G, denoted x(G), which is defined to be the order of a smallest disconnecting set
of vertices of G.
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Given a graph G with vertices labeled 1,2, --- ,n and a permutation « in
S,, the permutation graph P, (@) is obtained by taking two copies of G, say G,
with vertices z1, 13, - - - , T, and Gy with vertices y1, 42, - - - , Yn,along with edges
joining z; in G 10 ya¢sy in Gy. It is known that permutation graphs have high
connectivity properties, as is shown in “On the Cut Frequency Vector of Permuta-
tion Graphs” [17] and “Connectivity and Hamiltonian Properties of Permutation
Graphs” [13]. Note also that permutation graphs are in some ways generalizations
of the Cartesian product since if @ = (1) then Po(G) ¥ G x K. Permutation
graphs of cycles have been studied extensively as generalizations of the Petersen
Graph in [3, 5, 14, 15, 18, 19] and their vulnerability properties were studied in
[16]. In this paper the authors study the integrity of permutation graphs of K, and
the toughness, integrity, and binding number of permutation graphs of K, .

Complete Graphs

It is clear that for any « in Sy, Po( K,) ¥ K2 x K,. We begin by stating some
known results which determine some of the vulnerability parameters for Po( Kp) .

Theorem 1 [13]. For a in S,, k(Pa(K3,)) = n.
Theorem 2 [4]. t(Kp, X Kq) = B2 —1(m,n>2).
Corollary 2.1. For a in Sy, t(Pa(Ky)) = 3.

Th 3[9). b(K,, x K {1’ ifm=mn=2
orem . m = .

¢ X fn Wmﬂ—_l”;z_w:ﬁ’ otherwise.
1, ifn<2

llary 3.1. For o in Sy, b(Pa( K3)) = i
Corollary or o i Sy, b( Pa( Kn)) {2—";‘-—1, otherwise.

The final result on the permutation graphs of complete graphs gives the in-
tegrity. The notation [z] shall denote the least integer greater than or equal to
I.

Theorem 4. For a in Sy, I( Pa(K»)) = [3].

Proof: Let G, and G, be the copies of K, in Pa(Ky). Clearly, if S is not a
disconnecting set then |S| + m(Pa(K,) — S) = 2n So, assume S is a dis-
connecting set. Let S, = V(G;) NS and S, = V(Gy) N S. Since S is a
disconnecting set it follows that 1 < |S;|, |Sy| < »— 1. Furthermore, a ver-
tex in V(G;) — S cannot be adjacent to any vertex in V(Gy) — Sy; otherwise
P,(®) — S would be connected. So, in P,(G), the vertices in G, adjacent to the
vertices of V(G,) — S; are in Sy and |Sy| > [V(G:) — S:. Let k = |S;|, where
1< k<n—1.Then|S,|= n—k+gq,where0 < ¢ < k. Hence |S| = n+gand
m(Po(K,) — S) = max{n— k,k — g}. Thus, min{|S| + m(Pa(Ks) — S},
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taken over all disconnecting subsets of vertices is equal to
nzin{n+ g+max{n—k,k—gq}} =n+ nl:in{q +max{n—k,k—gq}}
9 9

=n+ n:in{max{n—- k+q,k}}
’q

n+ min{min{max{n— k + ¢,k}}}
k <k

n+ mgn{max{n— k,k}}

n
n+ rE
3n
=[5
Now, for n. > 1, [32] < 2nand so I( Pa( K,)) = [32]. 1

Complete Bipartite Graphs

‘We now turn our attention to permutation graphs of the complete bipartite graphs,

K, n. We will assume a standard labelling of the vertices of Ky, . So, assume
that m < nmand that M and N are the sets of the partition of size m and = re-
spectively. Furthermore, assume that the vertices of M are labelled 1,2,... ,m
and that vertices of N are labelled m + 1,m + 2, ... , m + n. For the permuta-
tion graph P,( Km ) let ¢ denote the number of vertices in M, that are joined by
permutation edges to vertices in M,. The connectivity, toughness, integrity, and
binding number of P,( K, ,) can be expressed in terms of the parameters m, n,
and/or g as shown in the following theorems.

Theorem 5 [13]. For o in Spsp, K(Po( Kpmp)) = m+ 1.

In the proofs of the remaining theorems we will use the following defini-
tions and observations. Let M, be the set of vertices in M, that are joined by
permutation edges to vertices in M, and let M, be these vertices in M,. So
IM;| = |M,| = q. Let M] = M; — M, and M = M, — M, and thus
IM;| = |M]/| = m — q. Now the vertices in M are adjacent to vertices in
N, by permutation edges. Call this set of vertices N,. Similarly define N to
be the set of vertices in N adjacent to the vertices in M,/ by permutation edges.
Thus |[N7| = |N}/| = m — ¢. Finally let N; = N, — N; and N, = N, — N}
Clearly the vertices in N, are adjacent to the vertices in Ny, by permutation edges
and [N;| = |N;| = n— m + q. Note that since 0 < ¢ < m some of these sets
may be empty. Let K = {M;, M, M,, M}/, N/, N/, N,, N;'}. The relationship
among these sets is shown in Figure 1.

Lemma6. There exists adisconnecting set S' of Po( Kmy) With t(Pa(Kmy)) =
F('F.(—zlfg,,,l,)__so such that forall Z in K , if Z N S' is nonempty then Z C S'.
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Figure 1. Relationship among the sets in K .

Proof: We do the case when Z = M. Let S be a disconnecting set of Po( K )
with #(G) = srpciy—gy and let A, = SN M; and B, = M; — A,. Suppose
that A, and B, are both nonempty. The proof proceeds in four cases.

Case 1: If N, and N, are not contained in S then all of the vertices in N; — S are
in the same component since B, is nonempty. Let z; bein A;. Then y,() isin 4,.
If yo(sy is in S let T = S — {z;}. Then IT| = 18] — 1 and w(Po(Kmw) —T) =
w(Po( Kmn) — S), since z; is in the same component as the vertices in N, in
Po(Kmpa) — T. Thus m—}g—;l;)_—,_,.)- < F(ETI‘('S:I,FS_)' which is a contradiction.
Hence v is not in § for all v in Ay and so A, N S is empty. Also, if there exists
v in B, such that v is not in S then the component of P,( Kpms) — S containing
v contains a vertex in B, and so contains all vertices in N, — S and N; — S.
This implies that this component contains all of the vertices in Po( Kmyq) — S
and so S is not a disconnecting set, a contradiction. Thus By, is contained in S.
Define T = S — B, U B,. Clearly |T| = |S|. If M is not contained in S then
W(Pa(K ) —T) = w(Pa(Km) —5) and $0 srprkils o= oo L and M,
is contained in T'. If M” is in S then w(Pa(Kmn)—T) =w(Pa(Km ) —-S)+|N;—
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S|—1andso sprrry < SRk =9 TS SR Kn ) 1) — G(PalKn)=5)
and M, is contained in T'.

Case 2: If N, is contained in S and N, is not contained in S then let z; be an
element of A, and SO ya(;) isin Ay. Let T = S—{z;} and so|T| = |S|—1. f yac)
isnotin S thenw( Pa( Kmn) —T) = w(Pu( K mn) —S) andif ya(;) isin S we have
w(Pa(Kmn) =T) = w(Pa(Kmn) —8)+1.50 w"_(P..<1§.L,,.‘)'—T‘> < ‘w(P—LL_‘,(KS,,.,..)—S)’
a contradiction. Therefore this case yields a contradiction.

Case 3: If N, is not contained in S and N, is contained in S thenletz; be in A,
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and SO Y iSin Ay . If yopy isin SletT = § — {z;}. Thus |T| = |§] -1
and w(Pa(Kmpn) ~ T) = w(Pa(Kmpn) — S), implying that orprfilrrs <

WKMJ)'_S)' a contradiction. Hence A, N S is empty. Now, let z; be in B;.

Then yu(;) iS in By. If yoeqy is in S then let T = S — {ya(iy} U {z:}. Hence
IT| = |S] and w(Po Kmpn) — T) > w(Pa(Kma) —S) + 1, again a con-
tradiction. So M, N S is empty. Now, if {(Pa(Kms)) < 1 thenletT =
S — {z;} for some z; in A;. Hence [T'| = |S| — 1 and w(Po(Kmn) — T) =
w(Pa( Kmn) — 8) = 1. S0 grprbis— < srpriiy—gy» @ contradiction. If
t(Pa(Kma)) > 1 then let T = SU{z;} for z; in B;. Then |T'|=|S|+1 and
W(PalKma}T) = w(Pa( Km,n) =)+ 1. Hence gy < arpromysy»
another contradiction. Finally if {( Po( Kmn)) = 1 then let T = SU B,. Thus
|T| = [S’l + |B;| and w(Pa( Kmn) — T) > w(Pa(Kman) — S) + |Bs|. Hence
REE=D < SRk SO F(ETEW TP Kmy—5 A Mz isinT.

Case 4: If N, and N, are contained in S then let T = S — A,. Hence |T| =
|S|—14z| < IS| and w( Pa( Kmp) =T) > w(Pal Kmn) =) S0 grprin=py <

zW‘K%!T—ﬁ’ a contradiction. Therefore this case yields a contradiction.

The remaining cases progressively update the set under consideration to ob-
tain the set S satisfying the conditions of the lemma. Notice that when the set M,
is considered the case similar to case 1 is not applicable since either M, is con-
tained in S or M, and S are disjoint. Thus the status of M/, remains unchanged.
Similarly, we can see that at any stage all previously considered sets remain un-
changed. | |

Theorem 7. Foro in S, andm < n,

2 2

2m . I-fq<n+m

—q ? 3m
t(Pa( Kmn)) ={ mmen g
':»';; if g > %5

Proof: ByLemma 6 we need only consider disconnecting sets of Py( K ) Which
are obtained by taking unions of elements of K. It is easy to find the 55 discon-
necting sets of this type. Most of these sets trivially do not give disconnecting sets
of Po( Km,n) that yield t( Pa( Kms)). There are four sets which are not trivial.
These sets are S1 = M;UM,/, 82 = M;UM,,S3 = M;UN,,and S4 = M;UN,.

2m— — _2m

1S} : - —q
The values for P =5 &iven by these sets are v; = 5 ol V2 T mameae
T For fixed m and n it is clear that as ¢ mcreases the
following occur. The value v, increases, so the minimum value for v; is —, U4
decreases, so the mlmmum value for vy is "*"' L and v, increases, so the max-

imum value for vy is 23 It is easy to see that the minimum values for v; and
vy are larger than the maxlmum value for vy and so S; and S; may be discarded.

v3 = ,H. ,andU4
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Now, v3 decreases as ¢ increases and the intersection point for v and vs3 occurs
where g = X% and the theorem follows. |

Next, we will find the integrity of Pa( Km ). Again in order to find the in-
tegrity we will prove a lemma similar to Lemma 6 which will allow us to consider
only unions of sets in K.

Recall that for any graph G, if S is not a disconnecting set of G then |S| +
m(G—8) = p, where p = |V (G)|. Hence, in order to have |S|+m(G—-8) < p, S
must be a disconnecting set. Also, if S = M,;UM,, then |S|+m(Pa(Kmn) —8) =
2m + 2 and so we know that I(Py( Kpmz)) <2m+ 2.

Lemma8. There exists adisconnecting set S' Of Po(Kmg) With I( Po(Kmpn)) =
|S'| + M( Pa( Kmp) — S') such that for all Z in K, if Z N S’ is nonempty then
zZcCS.

Proof: We again do the case when Z = M. Let S be a disconnecting set with
I(Pa(Kmu)) = |S|+ M(Pa( Kmu) —S). Let A, = SN M and B; = M, — A;.
Suppose A, and B, are both nonempty. The proof proceeds in three cases.

Case 1: If N, is contained in S then let T = S — A,. Then |T| = |S| — |Az| and
M(Pa(Kma)—T) <M(Po(Kmn)—S)+|Az|. Hence|THm(Poa(Kma)-T) < |S]+
m( Poa( Km ) —S). Therefore T is a disconnecting set with |[T'|+ m( Po( Km,n) —
T) = I(Pay(Kmy)) and M, N T is empty.

Case 2: If N, is not contained in S and N, is contained in S then letT = SU B,.
Then |T'| = |S| + |Bz| and, since B, must be contained in the largest compo-
nent of Po( Km») — S and all others are isolated vertices, m( Po( Kma) —T) <
m( Pa( Km,'n) =S) _lel- Thus IT|+m(Pa(Km,n) -< lSI"‘ M(Pa(Kma)—S),
so T is a disconnecting set with |T'| + m(Po( Kmpn) —T) = I(Pa( Kms)) and
M is contained in T'.

Case 3: If neither N, nor N, are contained in S then consider M,. If M, is
contained in S then the proof is similar to the proof of case 2 . Now, if M, is
not contained in S then Py( Km ) — S contains exactly 2 components, one in
each copy of Kpmq. If neither z; nor yu(;) is in S then S is not a disconnecting
set. Hence at least one of z; and yq(;) isin S foralli = 1,... ,n+ m. Thus
|S] > m + n. Let C be the component of Po( K ») — S containing B;. Then

I(Pa(Km,n)) = |S|+ m(Pa(Km.n) -5
> S|+ V(O]
>n+ m+ |Bg|+ |N;— S|
>n+m+2.

But by the previous remark, I( Po( Kmn)) < 2m + 2. Hence, in this case
I(Py(Kpms)) =2m+ 2. LetT = M, UM,. Then T is a disconnecting set
with |T| + m(Pa( Kmn) — T) = I(Pa( Kmn)) and My, is contained in T'.
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As in Lemma 6 we can progressively update the set under consideration to
obtain the set S’ satisfying the conditions of the lemma. i

Theorem 9. For o in Sp,+y, and m < m,

2m+1; ifn=mandgqe€{0,m}
2m+ 2; otherwise.

I(Pa(Km,n)) = {

Proof: By the previous construction we know there exists a disconnecting set S
such that |S| + m( Pa( Kms) — S) = I(Pa( Kmz)). The proof now proceeds in
a manner similar to the proof of Theorem 7 . By Lemma 8 we need only consider
the 55 disconnecting sets of P,( K ) Obtained by taking unions of elements of
K. Again, all but 5 of these sets may easily be discarded as giving too large a
value for |S| + m(Pa( Kmq) — S). The remaining sets are §1 = M, U M,
Sy = M;UM,UN., 83 = M;UM,UN,, Sq4 = M; UM,/ UN,UNYy",
and S5 = M; U My U N,, with the associated values of |S| + m(Pa( Kmp) — S)
givenbyvy =2m+2, v =n+m+g+l,vy3 =n+2m—gqg+1l,u =
max{n+3m —2¢,2n+ 2¢q},andvs = n+ 2m.

If g # 0 and ¢ # m then n > m > 2 and clearly min{v;,vz,v3,v4,v5} =
v;. Hence I(Pa( Kmp)) =2m+ 2. If ¢ = 0 then it is easy to see that v3 > vz,
vg > vy,andvs > vy. Also, if m = nthenvy = 2m+1 < 2m+2 butotherwise
vy < vy. Finally, if ¢ = m then vy > v1,vs > v1,and vs > v3. Again,ifn=m
then v3 = 2m+ 1 < 2m + 2 but otherwise v; < vs3. 1

Finally, we determine the binding number of Po( Km ). Note that it is im-
possible to prove a result similar to Lemmas 6 and 8 since if m = 4, n = 4,
and ¢ = 2 then all the sets in K have order 2 while b( Po(Km4)) = f—f— Thus,
|S] = 11, and S cannot be the union of sets in K. Hence, a different approach
must be taken.

Theorem 10. For o in Span,and m < m,

ntg —nm___
n g< 2ntm—1
_ 2m+2n-1 2+3 2
WPa(Kmn)) = 1 “mzeci Zwmt SO< "Tmima
n+3m—2¢ m2+3mn—2m <
nm ! Fwam—2 49

Proof: First, we compute min { l%%fll} under a variety of assumptions about S,
then note which of these is smallest in various circumstances. In all cases we as-
sume n > 2 and thatany set S such that N(S) = V(Pa( Kmz)) is notconsidered
when the minimum is computed.

Case 1: Suppose S C M, (or M,). Then [N(S)| = |S| + n. The minimum is
by = ™ and this minimum occurs when S = M, (or M,). Similarly,if § C N
(or N,), the minimum is b;; = ™% and this occurs when S = N; (or N,).
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Case 2: Suppose S C M UN,,SN M, #0,and SN N, # 0. Then [N(S)| =
|S] + n+ m. In this case, the minimum is by; = 2222=L and this occurs when
S = M, U N, minus a vertex.

Case 3: Suppose S C M, UM,, SN M, # 8,and SN M, # @. Then |S| =
|SnM,’,|+|S‘nM,’,|+|SnM{,’|+|SnM,’,’| and |[N(S)| = 2n+|SNM|+|SNM]).
If ¢ < m, then the minimum is b3; = —-1 and this occurs when S = M, U M. If
m = g, then the minimum is bs; = 2"*2"" and this occurs when S = M, U M,
minus a vertex.

Similarly, if S C N, UN,, SN N; # 0, and SN N, # @, then there are two
possibilities depending upon the relationship between g and m. If ¢ < m, then
the minimum is b33 = %% and this occurs when S = N; U N,. If m = g, then the
minimum is b4 = 2"2’# and this occurs when S = N, U N, minus a vertex.

Case 4: Suppose S C M UN,, SN M, # §,and SN N, # @. Then |S| =
ISnM’|+|SnN’|+|SnM”|+|SnN”|and|N(S)| m+n+|SOM]|+|SON|.
If m < nor g > 0, then the minimum is bs; = ?M and this occurs when
S = M,UN,. f m = nand g = 0, then the mmlmum is baz = 321 and this
occurs when § = M, U N, minus a vertex.

Case 5: Suppose S C N;UN,UM,,SNN, #8,SNN, #0,and SN M, # 0.
Then |S] = |SON,| + |SNM:|+ |SN M|+ |SAN|+ |SNN| and [N(S)| =
2m+ n+ |SN MY+ |S N N}|. The minimum is bs; = 2222=L and this occurs
when S = N, U N, U M, minus a vertex of M/ or N,.
Simﬂarly,ingM,uM,,uN,,SnM #0) SnM #0,andSNN, # 0,
then the minimum is bs; = 22r25=L and this occurs when S = M, U M, U N,

X n+2m—1
minus a vertex of M,', or N,/. "

It is easy to see that by
bsp > bz, bsa > bsi, b1z > biz when ¢ < m, and b2 > by wheng = m.
So, in all cases, b( Po( Km »)) is equal to b33, a1, Or bs;. It is easy to check that
by < bsy iff ¢ < 52221, bs < ba iffq < %&,m by < bay iff

2
g < 222 The theorem follows since -2+ < Zm ¢ mtimn-im ]

Notc that the binding number of Py ( Kr 5) iS always at least 1 and is equal
to 1 if and only if ¢ € {0, m}. Also, the three cases of interest in the theorem are
illustrated by choosing n= 10, m = 8,and g = 2,4, and 6, respectively.

> b1z, bt > bia, ba1 > b3z, b3z > b > bay,
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