k-Saturated Graphs of Chromatic Number at Least k

D. Hanson
University of Regina
Regina, Saskatchewan
Canada, S4S OA2
and
B. Toft
Odense Universitet
Odense, Denmark

Abstract. In this paper we consider the structure of k-saturated graphs (G % K but
G + e D Kj for all possible edges e) having chromatic number at least k.

Introduction

A (simple) graph G, on n vertices, is said to be k- saturated if G does not contain a

complete subgraph, K, on k vertices but does so whenever any new edge is added.
These graphs have a long history dating back to Turan’s celebrated paper in 1941
(see [6]). Turan’s Theorem states that if a graph G, has more than 2(",;‘_2‘) (n® -
%) + () edges where n=t(k—1) +r,t > 0,0 < r < k— 1, then G, contains
a K. Furthermore, the complete ( k — 1)-partite graph, Tk_1 ,, where each of the
k — 1 parts has either t or ¢ + 1 vertices, is the unique extremal example. Turan’s
Theorem has been generalized in many ways. Among these results are the Erdos-
Stone Theorem, [3], 1946, which states: given a positive integer ¢t and e > O, if
G has more than 1 (42 + €)n? edges, n > n(t, €), then G, contains a Ty 4.
That is, if ¢ and n are large enough, G, contains any k-chromatic graph.

In this paper we consider the following problem. Suppose G,, is k-saturated
and the chromatic number of G, satisfies x(G}) > k. How many edges, e(G5),
can such a graph have and what are the extremal graphs? Our investigation of this
is motivated in part by a result obtained by Erdds and Gallai and independently by
Andrasfai (see [2] or exercise 7.3.3 [1]). They show the extremal graphs for k = 3
consist of a 5-cycle together with a complete bipartite graph on n — 5 vertices,
each of which is joined to exactly two vertices of the 5-cycle in such a way as to
not create a triangle (see figure 1).

The problem we are considering has been studied in some generality by Si-
monovits ([4],[5]), the most relevant theorem being Simonovits’ Chromatic Per-
turbation Theorem which in our case states: If n > n,(k),x(G,) > k, but
G, does not contain a K, then there exists a constant K such that e(G,) <
e(Tk_1,2)— 527 + K. Our purpose here then is to give a detailed description of
the k-saturated graphs G,, with a maximum number of edges when x(G,,) > k.
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FIGURE 1

Statement of Results

For simplicity let us define the family of graphs T.¥ to be those graphs on nvertices
consisting of a complete ( k — 1) -partite graph on n— 2 vertices, with classes of
independent points C;,C;, - - - , Ck-1, together with two adjacent vertices z and
y and where each vertex of C) is joined to precisely one of z or y, z and y each
adjacent to at least one vertex of C; , no vertex of C; is adjacent to either z or y
and all vertices of C;,i > 2 are adjacent to both z and y. It is easy to see that
members of T,* are k-chromatic and k saturated. In fact we may think of such
graphs for k > 3 as the join of a complete (k — 3) partite graph with the graph of

figure 1, see figure 2.

/ FIGURE 2

L]

N

\ A/
1

Define, for k > 3, T}_, , tobe graphs in T.¥ for which [Cy |+ 1, |C,[+2,|G5], -
|Ck-1] are equal or as equal as possible. For n > 3k — 4 we can describe Ti1n
as follows: letn+ 1=t(k—1) + 1,0 < r < k— 1 and let G, denote a member
of T.¥ on m, = n— r vertices and e, = e(Tk-1,nr) — (1 — 2) edges where the
classes C; satisfy |C| =t —1,|C2| =t —2 and |C; | =t,i> 2. (Gy is unique
up to adjacencies of x and y to class C;). Define T} _ 1ntobea graph G, with

one vertex added to precisely r of the classes C, - - - ,Cg—_1r. It is not too difﬁcult
to see that the graphs, T}_, ,,, are maximal, with respect to the number of edges,
in the family T;*.

We have the following:

Theorem. Let G, be a maximal k-saturated graphonn > k+2 > 5 vertices
with x(Gy) >k, then G, isa T|_, , graph.
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The proof of the theorem consists of a number of steps, showing that Gy, is in
fact k-chromatic and has the correct form. This latter step involves showing that
G, contains a vertex x whose removal implies x(G,—z) < k— 1. One technique
we use in the proof is based on Zykov’s proof, [7], of Turan’s Theorem, called
symmetrization by Simonovits (see [5]). Two vertices z and y in a graph are called
symmetric if they have the same neighbours, i.e. N(z) = N(y). We symmetrize
a vertex u to a vertex v by removing the edges incident with v and joining u to
N(v). The important observation about symmetrization is that it preserves the
property that the graph has no K.

Proof of the theorem: Let G = G, satisfy the conditions of the theorem and let
X={zeV(G)| x(G-1)<k-1}

We will show that Gei;" Denote E(G) by E. We have by symmetrization and
the maximality of G, the following properties:

i) If (z,y) ¢ E where z ¢ X thend(z) > d(y).
ii) If (z,y) € E where z ¢ X thend(z) >d(y) — 1.
i) If (z,y) € E,(z,2),(y,2) ¢ Eand {z,y,2} N X =0,
then there exists a graph G satisfying the conditions of the theorem with X' D
XU{z}where X' = {z € V(G")|x(G' —z) < k—1}.

We elaborate only on property iii). It follows from i) that d(z) = d(y) = d(z2).
Symmetrize y to z. The resulting graph G’ has the same number of edges as G,
no K has been created and x(G') > k. Suppose that in G’ we have that z is not
criticali.e. z ¢ X'. Symmetrizing z to z now results in a graph that is k-saturated
and of chromatic number at least k but with one more edge, contradicting the
maximality of G.

It follows from iii) that there exists graphs G satisfying the condition of the
theorem with X = @. We first concentrate on these and then show that all graphs
of the desired type have, in fact, X # 0. For (x,y)¢ E denote by K(z,y) the
complete k graph formed in G by the addition of the edge (z,y).

Case I: X # @. Assume for the moment that the theorem fails for some least
k and that in an extremal graph G, X # @. (From our previous remarks we must
have k > 4).1f G contains a vertex z € X of degree n—1 thenG—z is (k—1)-
saturated, of the correct form and hence G is k-chromatic and of the correct form.
If no such vertex exists, consider an z € X, then G has the form shown in figure 3
where z is adjacent to proper subsets A, and A; of classes C; and C, respectively
and where G contains all edges of the form (u, w) where v, w € N(z) and of the
form (v, w) wherev € N(z),w ¢ N(z) (i.e. G—zisacomplete (k—1)-partite
graph with the exception of some edges of the form (s, t) where s and ¢ are both
neighbours of z). That both A; and A, exist follows from the observation that
forv € A1, u € C; — Ay, K(u,v) does not contain z implying the existence of a

161



vertex w € C, — N(z). The existence of the (k — 1)-partite edges follows from
the k-saturated property. We observe for v € A, there is an edge missing to some
other class, else K (u, z) implies a K in G, namely K (u, z) — {#} U {v}. Since
u is adjacent to all other vertices in all other classes, we have that d(v) < d(u).
The vertices of A, have similar properties. We look at two subcases, whether or
not there is a v € A; belonging to the set of critical vertices X.

o] C2 Cs Cu-1

FIGURE 3

Case L.1: Suppose v € X. Consider a (k — 1)-colouring, C(v), of G — v
and consider K (u,x) where u € C; — A;. Since |K(u,z) N C;| = 1 for each
i, we may assume that the vertex of K(u,z) in C; is of colour i under C(v)
and that x is of colour 1. Let w € C, — Aa, then every vertex of K(w, x)
other than those in C; or z itself is adjacent to v and therefore coloured with the
colours 2,3,--- ,k — 1 under C(v). Thus K(w, z) N C; has colour 1 as does
. This impossibility implies that K (w,z) N C; = {v} and that no other vertex
of A; is critical. Fora € Aj1,a # v, we have that d(a) < d(u) by i) and
therefore d(e) = d(u). It follows that for such a € A; there is exactly one edge
missing from a to the classes C»,--- ,Ck—1. Consider suchana € Aj,0 # v.
Let K(u,z) N C, = {b}. Under the colouring C(v),b has colour 2 as does w
(w is adjacent to all vertices of K(u,z) — {b,z}).If (a,b) ¢ E, a is adjacent
to w and all of K(u, ) — {u,b}, i.e. to vertices of colour 1,2,3,-.-k — 1
under C(v), a contradiction. If on the other hand we had that (a,d) ¢ E where
for example d = K(u,z) N Ck-1, under C(v) o is adjacent to vertices of colour
1,2,---,k—2,namely all of K (u, z) —{u, d}, so that e must have colour k— 1.
However K(u, a) —(u,a) iscolouredby 1,2, ---k—1 under C(v) hence v and
a have the same colour, a contradiction. These contradictions together imply that
if v is a critical vertex in A; then A; = {v}. Similarly if A, contain a critical
vertex, |Az| = 1.

In the event that A; contains such a critical vertex v a number of possibilities
arise. First suppose z € A; is also critical, then using the fact that our graph
has a maximum number of edges and that each of v and z has at least one edge
missing to another class, it is not to difficult to show using the maximality of E that
(v,z) ¢ E and that G € T and the theorem holds for this k also. Alternatively
we may have that v € A, is critical but no such vertex exists in A;. Let the
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vertices of Az be 21,22, ,2p,- -+, 2p+q Where (v,2;) € Eiff i < p. Suppose
p > 1. We may assume that z is adjacent to all vertices of U;.» C; (otherwise there
cxists a graph G' contradicting the maximality of E, namely with v not adjacent
10 any vertex in A,, z adjacent to U;>2 C; and all other (k — 1)-partite edges
present). However K(w,z;),w € C, — A, now implies the existence of a
K¢ = K(w, z1) — {w}U{z} in G, contradicting the fact that p > 1. Thus in this
case also we must have G € TF.

Casel. 2: We now consider the cases where no such classes A; contain a critical
vertex. Suppose v € A;. By (i) we have d(v) > d(u) implying d(v) = d(u)
for u € C; — A; and v has exactly one missing edge to the other classes. If for
some pair of vertices v € Ay, z € A, the missing edges were to U;-, C; then the
graph G' mentioned at the end of Case 1.1 would contradict the maximality of E.
Hence we may assume that the missing edges associated with vertices in A; are
all to vertices of A;. Choose a vertex u € C; — A; and consider K (u, ). Let
K(u,z) N Az = {a}. Then there exists a vertex b € A; such that (b,a) € E,
(note |A;| > 1), implying K (u, z) — {u} U {b} is a K in G, a contradiction. It
follows that we must have in fact that A; = {v} and v is critical.

In all cases where X # @ we have, when G is maximal, A; = {v}, v is not
adjacent to any vertices of A, z is adjacent to U;5, C; and all other (k — 1)-
partite edges are present. In other words GET.* and the theorem holds for this
case also.

Case II: X = 0. In order to complete the proof of the theorem we must finally
consider the case where for some extremal G, X = 0. As we have mentioned,
by iii) (from the symmetrization process) there exists a graph G’ with X' # 0.
We may assume that G can be changed to G' by symmetrizing two vertices y and
z of G leaving x € X' in G'. From our discussion of the cases where X # 0
we may assume G’ has the form exhibited in figure 3 with z adjacent to all of
U;>2C;, A1 = {v}, v non-adjacent to A, and all other (& — 1) - partite edges being
present. It should also be clear that G must have been of chromatic number k. If
inG, N(y) N C, = @ then z was critical in G, a contradiction, therefore y is
adjacent to some member of C; in G. We consider now different possibilities for
G by removing the adjacencies of y in G' and replacing them by its adjacencies
in G. G has the form illustrated in figure 4.

If y is not adjacent to some class, say C;, we can simply add y to C; implying
z was in fact critical in G. Therefore we have that y is adjacent to some u; € C;,
i=1,.-. k—1.These u;'s cannot form a K_;_ This implies u; € A ,u2€ Az
but then {y,z,u1,u3, -+ ,uk_1} is a K in G, a contradiction. Thus G cannot
satisfy X = @ and the proof of the theorem is complete.

Conclusion
The extremal k-saturated graphs of chromatic number at least k are obtained by

163



a very simple and seemingly obvious construction although it is difficult to see a
short proof of it. The question of what the extremal graphs would look like if we
insist that G be k-saturated and of fixed chromatic number £ > k remains open.
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