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Abstract. It is shown that a symmetric design with A = 2 can admit PSL(2,g) for
q odd and g greater than 3 as an automorphism group fixing a block and acting in its
usual permutation representation on the points of the block only if ¢ is congruent to 5
(mod 8). A consequence for more general automorphism groups is also described.

The question of symmetric designs admitting PSL(2,q) as an automorphism
group fixing a block and acting (not necessarily faithfully) in its usual permuta-
tion representation on the points of the block was considered in [6]. All examples
were determined except for A = 2 and ¢ odd, when the representation is neces-
sarily faithful. Our purpose is to show that no new examples can occur here if ¢
is congruent to 1, 3 or 7 modulo 8, apart from the known example with g = 3.
Section 1 contains a statement of this result (Theorem 1) and some lemmas. Sec-
tion 2 contains a proof of Theorem 1. A consequence of this result is described in
Section 3.

We do not give detailed background either for the designs or for the groups.
This can be found in [6] and the references therein,

We will sometimes use the term biplane for a symmetric design with A = 2.

1. Statement of Theorem 1 and some lemmas.

Our main result is the following theorem.

Theorem 1. Let D denote a symmetric design with » = 2 and G an automor-
phism group of D isomorphic to PSL(2,q) for g odd and q > 3 such that G fixes
a block B and acts on the points of B in the usual permutation representation of
G of degree q + 1. Then q is congruent to 5(mod 8) and q — 1 is square.

The proof of Theorem 1 will require the following series of lemmas. The hy-
potheses of Theorem 1 are assumed in the following discussion and for Lemmal
and Lemma 2.

Throughout F' will denote the field of g elements and the points of B will be
identified with the elements of F' and the special symbol co. The elements of G
can be written as linear fractional transformations ;:—:% for eh — fg a non-zero
square in F'. The elements of G which fix oo may alternatively be written ez + f.
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The involutions in G will usually be written as e:—ff and this representation of any
involution is unique ; conversely, every involution has this form if g = 3( mod 4).

G will be transitive on the blocks different from B and on the points off B of
which there are, respectively, g(¢ + 1)/2 and g(q — 1)/2. If C is any block
different from B and p is any point off B then G¢ has order ¢ — 1 and G, has
order g + 1. As described in [6] we may use the classification of the subgroups
of PSL(2,q) due to Dickson [5] to show that G, may be assumed to be dihedral,
and a similar argument shows that G¢ may be assumed to be dihedral also; the
exceptional occurences of subgroups of PSL(2,q) of order ¢ — 1 which are not
dihedral are ruled out here because for each the non-existence of D is shown by
the Bruck-Ryser-Chowla conditions ([4] pp 61, 63). Thus we may state:-

Lemma 1. (o) If C is a block different from B then G is dihedral of order
qg-—1.
(b) If p is a point not on B then G, is dihedral of order g + 1.
The Hussain chains for biplanes of this type, and the group action on them, were

partially determined in [6]. From there we may extract the information contained
in the following lemma.

Lemma 2. If q is congruent to 3 (mod4) and p is a point not on B then the
involution h in the centre of Gy, fixes no block through p. Any other invovution
in Gy fixes exactly two blocks through p which are interchanged by h.

The following lemma is a special case of Lemma 2.6 of [1].

Lemma 3. If H is an automorphism group of a biplane which fixes at least two
points and has odd order then the fixed points and blocks of H form a subbiplane.
In particular, H fixes equally many points on any two fixed blocks.

We will also require the following two lemmas.

Lemma 4. If C is a block of a biplane and g is an involulory automorphism
which does not fix C then g fixes either O or 2 points of C.

Proof: Clearly the only points of C which g can fix are the two points of C N C¥.
Since g either fixes or interchanges these points, g fixes either O or 2 points of C.

Lemma 5. In a symmetric Hadamard 24 ) + 3,2\ + 1,)) design 'K, for any
three distinct blocks X, Y, Z we have X N'Y°N Z° # 0.

Proof: Let Hz denote the residual of 1 at Z. Then H z cannot contain a repeated
block since it contains less that twice as many blocks as points (see, for example,
[7]). It follows that X intersects Y°in Hz, thatis X NY°N Z 0.
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2. Proof of Theorem 1

Under the hypotheses of Theorem 1 the number of points in D is (g+ 1)g/2+ 1.
This is even if ¢ = 5(mod 8) and so by the theorem of Bruck ([4] page 61) the
order of D, that is g — 1, is square, whence the last condition of the theorem. The
rest of the proof consists of showing the impossibility of an example with ¢ =
1,3,7 (mod 8). We take the three cases separately.

Case 1. ¢ = 1(mod 8). This case can be dismissed easily. When ¢ = 1(mod
8) G contains the permutations —z,1/z and :“T‘l These generate a subgroup K
of of order 8 each element of which either fixes or interchanges the pairs {co,0}
and {1,—1} . Let C and D be the blocks intersecting B in these pairs and let C
and D intersect in points a and b which necessarily lie off B. Then every element
of K either fixes or interchanges C and D and so either fixes or interchanges a
and b. A subgroup of order 4 (at least) therefore fixes a and b. But G, has order

g + 1 which is not divisible by 4, a contradiction.

Case 2. ¢ = 7(mod 8). Assume g = 7(mod 8). If a is a point on B then G,
has order g(¢—1) /2, which is odd. Therefore any 2-subgroup of G is semi-regular
on the points of B.

For a point b off B, G has order g+ 1 which is divisible by 8; thus G, contains
a subgroup K of order 8. Suppose first that K fixes a second point ¢ off B. Then
K fixes or interchanges the two blocks through b and ¢ and so permutes among
themselves the four points in which these blocks intersect B. Since K is semi-
regular on B of order 8, this is a contradiction. The same argument shows that K
has no orbits of length 2 on the points off B. Thus all orbits of K on the points off
B, other that b, have length 4 or 8. We can conclude from this that any subgroup of
G} of order 4 fixes no point off B other than b. By Lemma 2 G} is dihedral having
a unique involution A in its centre which fixes no block through b. If g is any other
involution in G}, then g fixes two blocks through b which are interchanged by A. If
c is the second point in which these blocks intersect then c is fixed by g and h and
50 by the subgroup of order 4 which they generate. This contradiction concludes
the argument for ¢ = 7( mod 8).

Case 3. ¢ = 3(mod8). When ¢ is congruent to 3 or 5 (mod 8) the Sylow 2-
subgroups of G have order 4, and so arguments like those above are not available.
For ¢ = 3(mod 8) a straightforward analysis of the possible Hussain chains as
determined in [6] immediately leads to conditions which are very unlikely-looking
but from which a contradiction cannot easily be deduced. Our approach is to es-
tablish a one-to-one correspondence between the points off B and the involutions
in G. In fact, for every point a off B, G, is dihedral of order ¢ + 1 so that Z(G,),
the centre of G, has order 2. It is not difficult to establish that for different points
a and b off B the involutions in Z(G,) and Z(G}) are different, and simply be-
cause there are equally many involutions in G as points off b, the correspondence

167



thus established is one-to-one. So we identify each point a off B with the involu-
tion in Z(G,) and the permutation action of any element of G on these “points”
is given by conjugation.

Next we consider the permutation action of G¢ on C\B for any block C differ-
ent from B. By Lemma 1, G is dihedral of order ¢ — 1 and will contain a cyclic
subgroup H of order (¢— 1) /2, which is odd. H must fix the two points of BNC.
Each non-identity element of H fixes no other point on B, since the stabilizer in
G of three points of B is the identity. By Lemma 3, no non-identity element of
H fixes a point of C\B. Thus H has two orbits of length (¢ — 1)/2 on C\B.
Then G either has two orbits on C\ B and induces the usual dihedral permutation
on each, or G is regular on C\B. In the respective cases any involution in G¢
fixes 2 or 0 points on C. Since G is transitive on the blocks different from B, the
stabilizers of any two such blocks are conjugate in G. Thus if G is regular on
C\B no involution in G fixes a block different from B and a point on that block.
But Lemma 2 shows that involutions in G do fix such point-block pairs. Thus for
any C different from B, G¢ has two orbits on C\B and each involution in G¢
fixes two points on C.

Now let C be the block intersecting B in {o0,0}. We ask which involutions
( that is, points under the above correspondence) lie on C. The involution —1 /z
fixes C and so fixes two points a and b of C\ B. Let D be the second block through
a and b. Then —1/z fixes D also. Thus D intersects B in {w, —1/w} for some
w in F. The involutions in Z(G,) and Z(G}) fix no block through a or b but
interchange C and D and so interchange the pairs {c0,0} and {w,—1/w}. It
follows that they equal 2¢L and =21zt jn some order. The condition that these
be in PSL(2,q) is that w? + 1 be a non-square in F. The mappings tz, for ¢ a
square in F, fix C; conjugating the above involutions by these mappings we get
all ¢ involutions corresponding to points on C\ B. They are

twz +
_— for are i 1
s tw ort a square in F ()]
and
—tw! + ¢ ,
W for t a square in F' 2

Our purpose is to show the existence of an involution in G not fixing C which
commutes with exactly one of the involutions in (1) and (2) above. It will then
fix exactly one point on C in contradiction to Lemma 4.

Let hy be any involtuion of Type (1) above and let g be the arbitrary involution
2t/ Then

z+c

(ewt + t¥)z + fwt — et?
(e—wt)z+ f+ ewt

hig
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and

(ewt+ flz + et? — fwt
(wt —e)z + 12 + ewt

ghy

These are equal if e = wt and f = 2 when g is of the form (1); otherwise they
are equal if and only if
2+ 2ewt+ f=0 3)

Similarly, if h; is of the form (2) then

(2 —etw )z —et? — ftw™!
(e+twz+ f—etw!

hag =
and

(f - etw Dz +et? + ftw™!
—(e+tw )z +12 —etw!

gha

These are equal ife = —t/wand f = t2 when g is of the form (2) and otherwise
if and only if

2 —2ew 't+ f=0 @

Thus if g is not of the form (1) or (2) then the fixed points of g on C correspond
to those roots of (3) and (4) which are squares in F'. We will assume now that f is
a non-square in F'. Then g is not of the form (1) or (2) and each of the quadratics
(3) and (4) either has no roots in F* dr has distinct roots exactly one of which is
square.

Assume e = 1. Then (3) and (4) have the respective discriminants 4(w? - f)
and 4(w~2 — f). Let T denote the set of non-zero squares in F'. The sets T+ u for
u in F form a Hadamard design ([4] page 97). By Lemma 5 the sets T' + w2, T°
and (T + w?)° have non-empty intersection. Let f be in this intersection. Then
f is non-zero since it is the sum of two squares in F" and — 1 is a non-square in F;
also f is non-square. Since fisin T + w2, f = s+ w2 for some square s, SO
w2 — f = —s is a non-square, that is the discriminant of (4) is non-square. Also,
since f is not in T+ w?, f is not of the form s + w? for s a non-zero square in F',
nor is f equal to w?; thus f — w? is a non-square in F and w? — f is a square,
that is the discriminant of (3) is a square in F'. Thus this g fixes exactly one point
on C, and g does not fix C since it maps oo to 1. This is a contradiction to Lemma
4 and concludes the proof for ¢ = 3(mod 8).
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3. A Consequence

In this section we state a theorem for any biplane admitting an automorphism
group G fixing a block B and acting transitively on the remaining blocks. The
theorem was proved in [2] under the hypothesis that G is a block stabilizer in a
doubly-transitive automorphism group. An examination of the proof of Theorem
2 of [2] will show that the doubly transitive group is invoked there only to reject
the possibility of a group in which the block stabilizer contains PSL(2,g) with
¢ = 3(mod4). As we have shown such a group to be impossible, the proof of
Theorem 2 of [2] now shows the following:

Theorem 2. Let G be an automorphism group of a symmetric design with X = 2
fixing a block B and transitive on the remaining blocks. Let k be the number of
points in a block and let k be greater than 4. Then

(a) G is doubly transitive on the points of B of order divisible by k( k—1) (k—
2)/4;
(b) ifk # 2(mod 4) then@G is triply transitive on the points of B.

In view of the classification of the finite simple groups, the groups satisfying
the conclusions of Theorem 2 are known (see [3]). Since any doubly-transitive
subgroup of G will be transitive on the blocks different from B and so must also
satisfy the conclusions of the theorem, it is trivial to show that any new example
will contain PSL(2,q) and so any example of a group satisfying the hypotheses
of Theorem 2 which is not already known will belong to the outstanding case of
Theorem 1 with ¢ = 5(mod 8).

References

1. M. Aschbacher, On collineation groups of synetric block designs, J. Combin.
Theory 11 (1971), 272-281.

2. P.J. Cameron, Biplanes, Math Z, 131 (1973), 85-101.

3. P.J. Cameron, Finite permutation groups and finite simple groups, Bull. Lon-
don Math. Soc. 13 (1981), 1-22.

4. P. Dembowski, “Finite geometries”, Springer—Verlag, Berlin-Heidelberg-New
York, 1968.

5. L.E. Dickson, Linear groups with an exposition of the Galois field theory,
Reprint, Dover Publications, New York, 1958.

6. G.Kelly, Symmetric 2-designs admitting PSL(2 ,q) fixing a block, Ars Corbina-
toria 12 (1981), 269-293.

7. H.B. Mann, A note on balanced incomplete block designs, Ann. Math Statist
40 (1969), 679-680.

170



