Composing Functions to Reduce Image Size

N. Sauer and M.G. Stone

University of Calgary!

Abstract. If f and g are self-maps on a finite set M’ with n.= | M|, then the images of
various composite functions such as f2 g f and g? f2 g may have diferent size. There is
of course a minimal image size which can be achieved by the composition of particular
functions. It can be difficult however to discover the size of this minimal image. We
seek to determine “words” over a finite alphabet S which, by specifying function com-
positions when letters are interpreted as functions, allow one to test for each k whether
or not there exists among all compositions an image of size n — k or less. For two
functions f and g, Wy = fg is clearly such a “word” for k = 1, since no composition
of functions f and g has an image smaller than or equal to |[M| — 1, if Wi = fg fails
1o do so. We prove the existence of such a word Wy, for each k, and exhibit a recursive
procedure for the generation of Wy, from Wy. The words Wy depend only upon the
finite alphabet S, and are independent of the size of the finite set M over which the
symbols from § are 1o be interpreted as functions.

Introduction

A problem of some current interest is the characterization of all identities which
hold in H,, the monoid of all self-maps on an n-element set. The authors in [2]
give a new proof of a result from [1]: the existence for each n, of non-trivial
identities which hold in H, but not in H1 . Central to our investigations of H,
is the existence of a certain word W in the free semigroup S* on a finite alphabet
S. This word should have a minimal image among all compositions of specified
functions from H,, when the letters of S are interpreted among those functions.
Equivalently, every other word V' in S* should be one-to-one on the image of W,
when V and W are interpreted as composite functions via a common interpretation
of S in H,. In H, for example, W, = AB is such a word for the two generator
free semigroup S* over the alphabet S = {A, B}. In Hs, W, = ABA?B>AB
is also such a word, although this is already rather more troublesome to verify!
More surprisingly perhaps Wi and W> fulfill a similar purpose in all Hy. If any
word V in S* for S = {A, B} has the property that |imageV| < n—1 for a
particular interpretation of A and B as functions in H, then W; = AB has that
property. Likewise if any word V in §* over S = {A, B} has the property that
limageV| < n— 2 for an interpretation of 4, B in H, then W, = ABA>B*AB
as well has the property that |[imageV | < n— 1 for that same interpretation of A
and B. We provide below a general framework for the description of words with
such properties.

1 This research has been supported in part by NSERC grants 69-1325 and 69-3039.
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1. Deficiency

Let S be a finite alphabet and M a set with |M| = n. A functiona : S — MM is
an interpretation of the alphabet S as self-maps on M. We extend « naturally to
an interpretation of S*. For V = A1 A; ... A;, (V) = a( A1) a(Az) ...a(A4,)
where concatenation is of course interpreted as composition of functions. For
V € S* and o an interpretation of S as self maps on M we define the deficiency
of (V') and the deficiency of o when M is finite:

Definition 1.1.
def (a(V)) = |M| - |image o(V)|
def () = max{def (a(V));V € S*}

Definition 1.2. For any natural number k we say that V. € S* has property Ay
for S, provided that for all interpretations o of S as self-maps on any finite set
M: if def (o) > k then def (a(V)) > k.

Example 1.3: Observe thatfor S = {41,..., A;} theproductW) = A1 45 ... A
has property A; for S. That is to say: if any word V' in S*, interpreted as self-maps
in a finite set M, has image smaller than | M|, then |image (aW))| < | M|, for the
same interpretation c. ‘

Our main result, proved in the next two sections, is the following:

Theorem 1.5. For every finite alphabet S and each natural number k there is a
word W) € S* which has property Ay for S.

This result follows from the more explicit Theorem 3.3. The reader is invited
however to first verify that W, = ABA? B AB has property A, for S = {4, B}.
Even to test the truth of this observation in a specific case, say on a three element
set, is not entirely trivial.

2. A Combinatorial Lemma
We require a simple combinatorial fact, which we state here as:

Lemma 2.1. If C,C,,...,C; is a partition of a finite set S with |S| =nintot
mutually disjoint non-empty classes, then the product of the class sizes is small:

t
[Ticit <2
=1

Moreover, equality holds iff |C;| < 2 forall j.

Proof: Let D = {T C S;T isatransversal,ie: |TNC;|=1forj=1,2,...,t}.
Thus |D| = H;=1 |C;|. Fix A € D. Observe that the function ¢ : D —
powerset (S — A) given by p(T) = (T — A) maps each T € D to a subset
of S — A. Itis easy to verify that p is one-to-one, hence [D| < 2™ as required.
If moreover p is onto S — A, each |C;] < 2, and [[5., |C;| = 2™* holds if each
IGil < 2. ]
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Lemma 2.2. For any self-map g from M into M with |M| = n finite, if
|image(g)| = n— k, then g is one-to-one on at most 2k subsets of M of size
n— k. Moreover g is one-to-one on exactly 2k sets of size (n— k) iff each class
of ker(g) has size one or two.

Proof: Let Cy, Ca, ..., C; be the equivalence classes of the kernel for g, that is
z ~ y iff g(z) = g(y). Then there are exactly ¢t = n — k of these classes, and
each subset of M of size n — k on which g is one-to-one consists of a transversal
from these classes. There are at most J]5.; |Cj| < 27* = 27(*0) = 2% such
transversals, by Lemma 2.1. The number of transversals is exactly 2% iff each
class has size 1 or 2. ]

3. Proof of Theorem 1.5

We wish to show the existence of W} with property A, for each natural number
k. Observe that if S = {A; : j € s}, then trivially W; = J];_; A; has property
A, for S.

If U = VW we shall say that W is an initial subword of U. We use ||W|| to
denote the length of a word W in S*. Thus if A, B € S we have ||A2BA|| = 4.
Also, when we work within a fixed interpretation o : S — H™, we will write
simply W in place of oW and rely on context to make it clear that we deal with
the interpretation of the words in question. Finally notice that the empty word will
be consistently interpreted as the identity function. We prove:

Lemma3.1. Let k > 1, S afinite alphabetand o : S — n*. If [imW|=n—k
and |imWVW| =n— k forevery word V with 1 < ||V|| < 1+ 32F, then
|imU| > n— k for every word U.

Proof: Suppose some word U satisfies [imU| < n— k, then |imWUW/| < n—k
as well. Let U be the shortest word with |imWUW| < n— k. It suffices to see
lU]] < 1+ 22%. We know (Lemma 2.2) that W is one-to-one on at most 2F sets
of size n— k . We distinguish two cases:

Case 1: W is one-to-one on fewer than 2 * sets of size n— k.

Recall that W is one-to-one on exactly 2 sets of size n — k iff each block of
kernel W has size one or two (Lemma 2.2). So some class of kernel T has at least
three elements, say kernel W = {Cy,Ca,...,Cn} With |Ci| = m > 3. Then
W is one-one on exactly as many (n — k) -sets as there are transversals of kemel
W, which is at most m -2 =m=("—k=1 = 2 k+1.3-m Bypm.2k1.2-m < 20k
for m > 3. Thus W is one to one on at most %2" sets of sizen— k. If U =
A,A,_1 ... A2 Ay then by the minimality of U with respectto |imWUW| < n—k,
allof the words W, A\ W, Ay AiW, A3 Ay AiW,... , Ar_1 A2 ... A2 A1 W have
distinct images of size n— k, and W is one-to-one on each of them. Thus r < %2 k
and ||U|| < 1+ 32%.
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Case 2: W is one-to-one on exactly 2* sets of size n — k.

Then there are exactly k kernel classes of W with size two. Every other ker-
nel class has size one, say kernel W = {Ci,Ca,...,Cu} With |C;| = 2 for
1 <j < kand|Cj| = 1 forj > k. Once again we consider all of the ini-
tial subwords of U, concatenated with W. The set of images of the words W/,
AW, Ay AW A3 Ag A\W, .. Ar1Ara o Ay AL WV are distinct transversals
of ker W by the minimality of U with respect to |imWUW| < n— k. Since W A,
collapses some pair (a, b) in the transversal A,_; ... A2 A; W, none of the other
transversals listed above contains that pair. This follows from the minimality con-
dition on U. There are at most %2 k transversals which exclude a given pair (a, b).
Sor—1< 22Fandr < 1+ 32 as required. (]

If k=1and § = {4, B} is a two lctter alphabet, we can improve the result of
Lemma 3.1.

Lemma3.2. If S= {A,B} and |inABAAB| =|imABBAB| =(n—1) then
forall words U € S*, |[imU| > (n—1).

Proof: Either |imB| = n— 1 or not.

Case 1: |imB| = (n— 1).

Observe that ker B has exactly two transversals, X and Y. It suffices to prove
that AX, AY, BX and BY are all transversals, or that AX = BX = X or
that AY = BY =Y. Observe thatinBAB = imB = inBBAB = inBAAB
(each is obviously contained inimage B and cannot be smaller since im ABAAB)|
= |imABBAB| = (n— 1)). Hence each of imAAB, imAB and imnBAB are
transversals of kerB. Also im B and im BAB are transversals as well. If imB =
imAB thenimBB =imBAB =imB. Sofor X = imAB wehave AX = BX =
X.IfimB # imAB then X = imB and Y = imAB are the two transversals.
Thus AX = imAB =Y. Also BY =imBAB =imB = X. Next BX =
imBBAB =imB = X,and finally AY =im AAB (which is a transversal). Hence
AY is X orY. This completes case 1.

Casc 2: [imB| = nand [imA| = (n—1).

Let us denote the two transversals of ker A by X and Y and proceed as in case
1. Obscrve thatim A =imAB =imAAB =im ABBAB,hence X =imA=imAB
is a transversal of kerA. Notec imAA =imAAB (sinceimA=imAB) thusimAA
=imA,and AX = X.

If imBA =imA then BX = X as well and we are done. If imBA # imA,
observe that |imABA| = |imABAAB| = (n— 1) so imBA is a transversal of
kerA. ThusY = im BA is the other transversal of kerA. Next, imABA C imA
and [im ABA| =|imA| = (n—1), because |imABAAB|=(n—1). ThusimABA
=imA so AY = X. Finally, |imABBAB|=(n—1),s0 BBAB is a transversal,
and also imnBBA = imBBAB is a transversal. Thus BY is a transversal, as
required. This completes case 2 and the proof of the lemma. 1
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Theorem 3.3. Let k > 1 and S = A1, As,... A, be a finite alphabet. The
following words Wy, have property A for S:

j=1

W1 = H (Wi V) Wi
VeQ

where Q = {V € S*;1 < ||V|| < 1+ 32%}.
Proof: Follows from Lemma 3.1. [ |

Corollary 3.4. For S = {A, B} the word W = ABA? B> AB has property A,
for S.

Proof: If some word V has |imV| < (n—2) then by Lemma 3.2 one of the words
ABAAB or ABBAB also has image size less than or equal to (n—2). Buteach
of these words occurs as a subword in W = ABA? B2 AB, so |im W| < (n—2).
1

Note that Corollary 3.4 confirms our carlier remarks about the properties of
ABA? B2 AB. Theorem 3.3 provides a recursive means for the construction (over
any finite alphabet) of words which discriminate for deficiency k.

Now we can answer the question posed in the introduction regarding composi-
tions of maps which yield a minimum image. Because Wy, contains as conjuncts
all W; with 1 < j < k we have:

Corollary 3.5. For every finite alphabet S and each fixed n, the word Wy,
has for any interpretation o : S — H, the smallest image of any composition of
functions corresponding to a word W € S* under the same interpretation o.

Proof: If the smallest such image has size one then W,_; has image size one as
well, since W,_; has property A,_; for S. If the smallest such image has size j
forsome 2 < j < (n—1) then W,_; has this image size as well, since W;,_; has
property A, for S. Butfor2 < j < (n—1),W,; isa conjunct in W,,_; and
thus the image of W,_; has sizc j as well. Finally if thc smallest image has size
n, then of course every = € S is interpreted as a permutation, and thus W, has
image size nas well. |

Open Problem: For a given alphabet S with |S| =t determine for each positive
integer k the length p,(t) of the shortest word W} which has property A for S.
We can show casily for example for ¢t = 2, withsay S = {4, B}, that W) = AB
and W, = ABA? B2 AB are minimal. Thus y,(2) = 2, y2(2) = 8. Indeed the
product W = Hj=1 Aj is clearly the shortest possible word with property A for
any finite S.
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