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Abstract. In this paper we study a problem related to one of the Turan problems:
What is the maximum number of edges in a 3-graph without a complete subgraph on
five vertices, the K57 We prove that the exact bound Turan conjectured is true if we
forbid a larger class of subgraphs including Ks.

A hypergraph H is an ordered couple (V, E) where V = V(H) is called
the vertex set of H and E = E(H) is a set of subsets of V, called edges of
H. A hypergraph in which every edge has k vertices is called a k — graph. A
k — graph on p vertices is complete if every k-subset of the vertex set is an edge
and is denoted by K, k . or simply K, if the size of the edges is clear. If a vertex u
anda(k — 1) — set S form an edge of H , we say that v is adjacentto S in H.

Let fk(m K¥) = max{|E(H)| : H is a k — graph on n vertices and H
does not contain a K,*}.

Turan [7] determined the values of f2(n; K. 2) for all nand p and he asked [8]
for the determination of f*(n; K¥). We refer the reader to [3] for more complete
references of this and other Turan type problems. One of Turan’s conjecture is

FmKd) = (n-2)/8, O

and the extreme graph H; is 2-colorable and with [ %] and [}] vertices in each
color class respectively. It has been shown that Turan’s conjecture is not true for
all values of n[2, 5]. One example is the affine plane with 9 points. Although we
can construct counter examples of Turan’s conjecture for 3-graph on as many as
22 vertices, we do not know if it is possible to do so for arbitrarily large number
of vertices.

The main aim of this paper is to show that if we forbid a larger class of sub-
graphs containing K’s called t-triples,the 3-graph H; is indeed the extreme graph
thus the bound in Turan’s conjecture is true for this class of forbidden graphs.

In a 3-graph H ,we say that two vertices z,y are t-connected if there are three
vertices a,b, and c such that both z and y are adjacent to all of the three 2-subsets
of {a,b,c}. Three vertices z,y, and z are called a t-triple ,if they are pairwise
t-connected and (z,y, 2z) € E(H). Ina Ks, every two vertices are t-connected
so every three vertices form a t-triple. Therefore,the fact that a 3-graph does not
contain a t-triple will imply that the graph does not contain K5. The 3-graph H
has no t-triple; the easy proof is left to the reader.
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Theorem. A 3-graph with n vertices that does not contain a t-triple has at most
e, edges, where

_ (n+ 1)(n—1)(n—2)/8, mnisodd,
€= { (n—2)/8, n is even.

Furthermore, the only graph that has e,, edges is the graph H .

Proof: We induct on n. It is easy to check that the result of the theorem is true for
n < 6. So we assume that n > 6 and the result holds for smaller values of n.

Let H be a 3-graph on = vertices that does not contain a t-triple and with the
maximum number of edges. Since H} has e, edges,H has at least e,, edges. For
every vertex v € V( H), we define the degree of v:

d(v) = |{e € BE(H) : v €e}|.
Let § = min{d(v) : v € V(H)},and

5 _{('n—l)(3n-5)/8, nis odd,
== 3n(n—2)/8, nis even.

Claim 1. The result of the theorem is true if § < 8,.

If there is a vertex z such that d(z) < §,, then the 3-graph H — z has no
t-triple and more than e,—; edges. This contradicts our inductive hypothesis.

If there is a vertex z such that d(z) = 8,.,then H —z = H;_; by the inductive
hypothesis.Let V3,V be the two color classes of the vertex set of H — z.If H is
also 2-colorable. it is clear that our claim is true. Suppose that H is not 2-colorable,
then there are four vertices a,b € V;,c,d € V, and z is adjacent to both {a, b}
amd {c, d}.

Let V' = V(H)\{z,qa,b,c,d}. We define a graph G as follows: V(G) =
V,E(G) = {(u,v) : u,v € V' and (z,u,v) € E(H)}.We claim that there
is no triangle in G. Suppose there is a triangle {u,v,w} in G. Without loss of
generality, we may assume that u, v € V;. Then z, ¢, d are all adjacent to all 2-sets
of {u,v,w} and (z, ¢, d) is a t-triple. This is a contradiction.Therefore according
to Turan’s theorem,z is adjacent to at most [(n—5) /27 -|(n—5) /2] 2-setsof V"'
Also there does not exist a vertex u in V' such that both (z, a, u) and (z, b, u) are
in E( H). Otherwise, (z, c,d) is a t-triple. Similarly,there does not exist a vertex
v such that both (z, c,v) and (x,d, v) are in E(H). Therefore thre are at most
2 .(n—5) edges in H in the form of (z, 7, s), where r € {a,b,c,d} ands € V'.
Since H does contain K,  is adjacent to at most five 2-sets of {a, b, ¢, d}. Then
we have

d(z) = 8, < [(n—5)/2] - [(n—=5)/2] +2n—5) +5
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which is a contradiction for all n > 6, and this concludes our proof of Claim 1.

Now that we have established Claim 1,for the rest of our proof,we will assume
that d(v) > 6, forall v € V( H). We define the graph Gy : V(Gy) = V(H)
and (z, y) is an edge in Gy if = and y are t-connected in H.

Claim 2. There is no triangle in the complement of Gy;.

Suppose this claim is not true and there is a triangle {z, y, z} in the com-
plement of G, i.e., any two vertices in {z, y, z} are not t-connected. Denote by
P the set of vertices that are adjacent to all three 2-sets of {z,y, 2} in H and let
|P| = p. Since every two vertices in P are t-connected, there is no edge among
the vertices in P. Therefore p < [n/2], otherwise d(u) < 8, for every u € P.

Forevery vertexw € {z, y, 2}, we define the "neighbor-graph" G, : V(Gy) =
V(H)\{z,y, 2}, E(Gy) = {(u,v) : (w,u,v) € E(H)}. Consider the three
neighbor-graphs G;, Gy, and G,. Let e;, e, e, be the numbers of edges and
tz,ty, . be the numbers of triangles in G, Gy, G, respectively. By a result of
Moon and Moser [6, also 1, p.297],we have

tr+t,+1, > ——l_—-37 {63[481 —(n- 3)2]

3(n
+ eylde, — (n—3)21+ e,[4e, — (n—3)?]}

> eld4e— (n—3)?%]
n—3

where € is the average of e;, e, and e,.
Case 1. nis even.
There are at most (n— 2) /2 vertices adjacent to all 2-sets of {z, y, z}. So

> 8, —2An—3) + % : ";4 = (9n® — 58n+ 12) /24,
and
te+ty+1t, > m(%z — 587+ 96) [%(91;2 — 58n+ 96) — (n— 3)2]
> (n;3>,foralln> 6.

Therefore there is at least one triangle appearing in two of the graphs, say G,
and G,.Then z and y are t-connected. This contradicts to our assumption.
Case2.nisoddandp < (n— 3)/2.

In this case we can get a contradiction by computation similar to the one in
Case 1.

Case3.nisoddandp = (n—1)/2.
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In this case, every vertex in {z, y, z} is adjacent to at least one 2-set of P.
For example, if z is not adjacent to all 2-sets of P, then

n—1 (n—1)/2 _
cos(7)- (7)o

Suppose that z and y are both adjacent to {u, v} C P. Then z, y are adjacent
to all 2-sets of {2,u,v}. So z and y are t-connected. This contradiction shows
that there are no two vertices in {z, y, z} adjacent to the same 2-set of P.

We can 4-colour the 2-sets of P according to whether they are adjacent to
z,y, z or none of the three. It is easy to check that for any such 4-colouring, there
are at least n—3 3-sets of P such that they contain different coloured 2-sets. These
3-sets cannot appear as triangles in any of the graphs G, Gy, G..

Therfore,as before,since € > 8, — 2(n— 3) + 5 - %5,

to+t, >

92 —64n+ 119 [9n? —64n+ 119
24(n—3) 6

> ("’;3> —(n=3)

for all n > 6.There is at least one triangle appearing in two of the graphs. This
contradiction concludes our proof of Claim 2.

A result of Lorden [4] states that if the complement of the graph Gy does
not contain any triangles, Gy contains at least (;‘) — e, triangles and the unique
extreme graph is the graph formed by two disconnected complete subgraphs with
sizes [%] and | 3| respectively.

If {z,y, z} is a triangle in Gy, then it is not an edge in H , otherwise it would
be a t-triple. So combining this observation and Claim 2,we conclude that there
are at least (;‘) — e, 3-subsets of V( H) that are not edges of H,so |E(H)| < en
and |E(H)| = e, can only occur when H is the 3-graph H3. This completes the
proof of the theorem. [ |

—(n— 3)2]
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