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1. Introduction.

A binary string of length n will be an n-tuple written w = wiw, ... w, with
w; € {0,1} fori =1,2,... ,n. WeletZ} denote the set of all binary string of
length n and set Z5 = U, Z3, the union over all non-negative integers n. The ac-
tion of the permutation = = (12 ...7) onZ3 given by w™ = wy(1)Wx(2) - .. Wa(n)
yields an equivalence relation on Z3; v ~ w if v = w™ for some positive integer
m. The resulting equivalence classes are referred to as circular binary strings.

A binary string w € Z3 is aperiodic if w # v™ for any substring v and positive
integer m, where v™ denotes the concatenation of m copies of v. A circular string
is aperiodic if every word in the equivalence class is aperiodic or equivalently, if
the equivalence class contains n distinct binary strings. By an elementary Mobius
inversion, (see [2]), the number of aperiodic binary circular strings of length n is
givenby L ° din (/)2 4 where p is the Mobius function of elementary number
theory.

For two strings, u, v in Z3 we say that u is lexicographically less than v, written
u<w,if

(i) v = uw for some non-empty string w € 2%, or
(i) u = ras, v = rbt for some r,s;t € Z3 and some non-empty a,b € Z;
witha < b.

We let L, be the set of binary strings of length n > 1 in Z} which are lexico-
graphically least in the aperiodic equivalence classes determined by ~. The strings
in L, are called Lyndon words of length n. As above |L,| = 1 ° d B(n/d)2°.

Recent interest in L, stems from [1] and [3] where L, is used for a code with
bounded synchronization delay and where Hamilton paths are built in the n-cube
from words in L,. A well-known classification of Lyndon words is given in the
following proposition. A proof of Proposition 1.1 may be found in [4].

Proposition 1.1. For a string w, the following statements are equivalent:

(1) w is a Lyndon word;
(2) w= uv whereu andv are Lyndon words withu < v;
(3) w is strictly less than each of its proper right factors.

The equivalence of 1 and 2 above yields a recursive algorithm for generating
all the words in L,, but unfortunately many repetitions are generated.
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Some strings are obviously Lyndon words. Namely, the words that end with 1
and begin with a string of 0’s longer than any other string of 0 ’s appearing in the
word. We let Z,, denote the collection of these Lyndon words that have length n

n—1
. . . ”\ . . .
with one exception. We do not include 0 1 1...1in Z., for reasons which will
become apparent later. Let By, = Lu\Z,.

Example: The 18 Lyndon words in L7 are

A B,
0000001 0010011
0000011 0101111
0000101 0101011
0000111 0110111
0001001 0111111
0001011

0001101

0001111

0010101

0010111

0011011

0011101

0011111

Fortunately, words of the type in Z,, account for most of the Lyndon words and
they can all be constructed by preceeding words that end in 1 with enough zeros.
In the following section we give a count of |Z,,| and | By| in terms of the | F¥|’s of
Table 1.

Section 2.
Let F¥ be the strings of length n having at least one substring of k 0’s but no
substring of (k+ 1) 0’s.

Proposition 2.1. If0 < n< k then |F¥| = 0. |F7| =1 andifn> k

k k
|Fal= E'Fvl:—i|+ S Fi el
i=1

i=0
i-1
.. k . . —
Proof: If n > k, every string in F¥ can be written in the form00...0 1 w for

some string w of length n — i and some 1 < i < k+ 1. Now there are |F¥ ;|
i-1

0 . A -
strings in F¥ of the form 0 0 ...0 1 w for 1 < i < k and there are

|FO oy |+ |Fogt |+ oot |FE 1]
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k

Py
strings in F¥ of the form 0 0 ...0 1 w. ]

Table 1 gives the values of |F¥| for0 < n < 20,0 < k < 10. Notice that
| F¥| is just the number of compositions with no part greater than k and at least one
part equal to k, see, for example, [5, Example 12, p. 155]. The limiting sequence
1,2,5,12,28,64,144,... has (n+ 1)th term given by (n+3)2™2 forn > 2.
By Proposition 2.1 the (n, k) th entry in Table 1 is obtained by adding along row
n— k — 1 until column k& then adding down column k from row n — k to row
n— 1. For example,

147+ 5
+ 11
+23
=47
At times, in the formulae that follow, | F¥| with i < 0 will appear. By convention,
in this case, take |F,| = 1 and | F}| = 0 otherwise.
Theorem 2.2. |Z,|=|2Z;|=0.Forn> 3,

(%3] k-3
1Zal= Y > IFHL.
k=0 i~k
i
— .
Proof: Every word in Z, canbe written0 0...0 1 w 1, wherew € USZL B, .
Thus we count, for n odd

type number of words of this type
n—2
—f—
00...011 |FY|
n-3
——
00...01wl [FO| + |F}|
L
00..01wl |E|+ | P3| + | F2|
j‘;\
3
0...01wl 'F’(')i-*|+"'+ F;_‘l_
001wl [FO |+ |FL,]
n—-1
—t—
00...01 [FO4]
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and for n even

type number of words of this type
)
—— 0
00...011 |Ey |
n-3
———
00..01w1 |FO|+ |F}
w2
—— it
00...01w1 [FL |+ .o+ |Fu
Z T
52
r——m—— -4
00...01wl [FO, |+ ...+ F__’_‘
= gt
001wl |FO 4|+ |Foal
n—-1
o N 0
00...01 |Fo sl
n—1 n—1
where 0 0...0 1 isreplacing0 1 1...1 ¢ Z, in the natural order of enumera-
tion. In either case, adding down the columns yields the desired result. [ ]

Thus, |Z,| is given by adding the entries in an upper triangular block of
Table 1. For example,

1 1
+1+1 +1+1
|Z7]=+1+2+1=13 and |Zs|=+1+2+1=23
+1+4 +1+4+2
+1 +1+7
+1

As an easy corollary of Theorem 2.2 we get the following recursion describing
[Zps1 |- Corollary 2.3 may be expressed as adding the bottom of the triangle onto
| Z4| to get | Zpse1 |-
Corollary 2.3.

[22]

|Zne1| = |Za| + E |Fioial-

1=0
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Proof:
|Zne1| — |Zal
22 lnk—2 [ )n—k—3 [22]

—E Z ZEDDY IF*l-EI % el

k=0 i=k

We now turn our attention to | B,|. Let
Gﬁ:{weF:|w"’"eF,f,vm20}
where m = (1 2...n). Notice that B, = L, NU,GE. This is why we included
-1
—_—— .
011...1in B, instead of Z,. Let
DE(m) = {w € G* | w = v™ for some string v}.

Proposition 2.4,

[1-] -1
|Ba = = E > u(n/d) | DEd).
k=1 d|n

Proof: Let S¥(m) = {w € Df¥(m) | w # v" forr < m}. Then |DE(n)| =
> dn SE(d) 50 by Mbius inversion,

ISE(m)| = )" u(n/d)|DE(d)|

djn
and thus the result follows. : [ ]
Proposition 2.5. |Dk(1)|=0 fork < n, |D¥(n)|=|G¥|, and for d|n,d # 1,n

k
IDE(D)| = Y GIFE |+ (k+ DIFi_, 5 ]).
i=0
Proof: Ford|n, d # 1,nnotice that a string in D¥(d) must be a repeated string of
i
length d. There are |Fd’f_,._ j_2| of them that have the form of repeating 0 0...0
j
1w100...0 where0 <14,7 < k—1andi+ j < k. Hence a total of

k
k - |k
Z |Faiojal = 21|Fd_f_1 I
i=1

0<i,j<k—1
i+)<k
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e pa——
Allother strings in D¥(d) musthave the form of repeating0 0...0 1w1 00...0
where 0 < i,j < kandi+j = k. Thereare 3% _o FI* i—j—a Of these. Summing

overall 4, j with i + j = k yields a total of Ei';o (k+ 1)|F}_;_,|- Notice above
i j

|t~ 0
that the string0 0...0 1 0 0...0 is counted by F_,. [ ]

By Proposition 2.4 and Proposition 2.5 we see that in order to write |Ba| in
terms of the |F|'s it suffices to concentrate on the |G%|’s. Let H} denote the
collection of strings in F¥ having at least two substrings of k 0°s.

Proposition 2.6. |G.| = |F) |+ |FL 3|+ 1 and fork > 1

k
IGE| = i |Hy i |+ (k+ D|Ff 42l
i=1

Proof: For k = 1, there are |F._, | strings in G, of the form 1 w and |F, ;| +
|FO | strings in G of the form 0 1 w 1. For k > 1, there are [H¥ ;_; |
i j
0 . k #‘h * . . .
strings in G of the form00...0 1w 100...0 where 0 < 1,7 < k— 1 with
i+ j < k yielding a total of "5, i|H% ;_, |. All other strings in |G%| have the
i j

fom00...01w100...0 where0 < 4,7 < kandi+ j = k. There are
|F% ;_;_| of these. Summing overall 4, j with i + j = k yields (k + 1)|Fo 2]
|
Proposition 2.7.
k
|HE = S HE |+ | P |
i=0
i

. . . A . -
Proof: Every string in H¥ can be written 00...0 1 w withi < kand w €
k

——
H:, ,0r00...0 1w with w € F¥ ,_,. Now, there are [H} ;_, | of the first

n— n—i—

type and |F¥_,_, | of the second. Hence, |H}| = o lHE |+ Py 8
We let f¥ be the kth-generalized Fibonacci sequence, that is,

1 if n=0
f,’f={2"" if 1<n<k
T ffifn>k.
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Proposition 2.8.
n—2k

|HE =" FELFE, .

i=1

Proof: We induct on n. By Proposition 2.7,

k-1
|HE = S IHE 1|+ 1P .

=0
By induction we have
|HE| = f§| Faci—2 | + FEIFE 45|+ ... + f¥ a2 |FE|
+ FoIFE sl ... + fE 2ka |IFE|
+ .
+ FEIFE pp i |+ oot fEa L IFE+ [P
Adding columns yields

|HE = fEVFE (o |+ FEIFE o+ oo fE o |FEL+ fEIFE i

. -1

since 1 = féc = flk’ 2::1 fzk = f:ﬂ for s < k and Z:=r—k f:k = frk |

We note in closing that even the generalized Fibonacci coefficients of Proposi-
tion 2.8 can be written in terms of the | F¥|’s as partial row sums.

Theorem 2.9. -
f= E |t .

=0
Proof: For n= 0 notice that f* = 1 and
k-1
DI = P+ [FL |+t [FEY = 1
i=0
For2 <n<k, ff=271!and
k-1

SR = F |+ ...+ [F2))
3=0
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which is a count of all binary strings of length n— 1 and hence equal to 2 »1 For
n > k we induct on n.
k-1
13
E:f E:IFn—kll"'E:l 0 T N i
i=n—k =0 1=0
= k-1
|Fp-al * IFpgegl + |Fpok-al
+ |F° |+ IF | 4 ceeeeeeeeses + ||F |
n-k n-k n-k
+
0 1 k-1
+ IFpsl + IFpsl | ¥ * | IFn-3
0 | 1 -
+ |Fn—2| + IFn—Zl PR I IFn-ZI
= o 1 CECRC RN
- IFn-ll + IFn-ll + + |F | + an-ll
|
TABLE 1 (|FX|)
nk 0 1 2 3 4 5 6 7 8 9 10
o] 2 0 0 0 0 0 0 0 0 ofl o
11 1 o 0 0 0 0 o 0 o] o
2 1 2 1 0 ) 0 0 0 Q o] o
3l 1 4 2 1 0 o 0 0 o ol o
4| 1 7 5 2 1 0 o 0 o of o
50 1] 12 11 5 2 1 0 0 0 o] o
6] 1] 20 23 12 5 2 1 0 0 o| o
7] 1] 33 47 27 12 5 2 1 0 ol o
sl 1| 54 94 59 28 12 5 2 1 o] o
o] 1| 88 185 127 63 28 12 5 2 il o
10] 1} 143 360 269 139 64 28 12 5 2 1
11| 1| 232 694 563 303 143 64 28 12 5] 2
12| 1| 376 1328| 1167 653 315| 144 64 28| 12 5
13} 1] s609] 2526] 2400] 1394 687| 319| 144 64| 28| 12
1a] 1| o8s| 4781| 4903| 2953| 1485| 699| 320 144| 64] 28
15| 1| 1596| o9012| 9960| 6215 3186| 1519{ 703| 320f 144 64
16l 1| 2583| 169290| 20135| 13008 6792] 3277 1531 704 320] 144
17] 1| a180l 31709| 40534] 27095| 14401] 7026| 3311| 1535| 704] 320
18] 1| 6764] s59247| 81300| s56201| 30391]|14984] 7127] 3323|1536} 704
19| 1]10945/110469]162538]|116143 63872|31808|15218| 7151|3327[1536
20] 1]17710]205606[324020]|239231[133751]67249(32392]15309]7163]|3328

28



References

1. L. Cummings, Connectivity of synchronizable codes in the n-cube, JCMCC
3 (to appear).

2. S. Golomb, A Mathematical Theory of Discrete Classification, in “Proceed-
ings of the Fourth London Symposium on Information Theory”, Butterworths,
London, 1961.

3. S. Golomb and B. Gordon, Codes with bounded synchronization delay, Info.
and Control 8 (1965), 355-372.

4. M. Lothaire, “Combinatorics on Words”, Addison-Wesley, Reading, Mass.,

1983.
5.J. Riordan, “An Introduction to Combinatorial Analysis”, Wiley, New York,

1958.

29



