Counting Special Sets of Binary Lyndon Words

Joseph L. Yucas

Southern Illinois University Carbondale, Illinois 62901-4408 U.S.A.

1. Introduction.

A binary string of length n will be an n-tuple written $w = w_1 w_2 \dots w_n$ with $w_i \in \{0,1\}$ for $i=1,2,\dots,n$. We let \mathbb{Z}_2^n denote the set of all binary string of length n and set $\mathbb{Z}_2^* = \bigcup_n \mathbb{Z}_2^n$, the union over all non-negative integers n. The action of the permutation $\pi = (12 \dots n)$ on \mathbb{Z}_2^n given by $w^\pi = w_{\pi(1)} w_{\pi(2)} \dots w_{\pi(n)}$ yields an equivalence relation on \mathbb{Z}_2^n ; $v \sim w$ if $v = w^{\pi^m}$ for some positive integer m. The resulting equivalence classes are referred to as circular binary strings.

A binary string $w \in \mathbb{Z}_2^n$ is aperiodic if $w \neq v^m$ for any substring v and positive integer m, where v^m denotes the concatenation of m copies of v. A circular string is aperiodic if every word in the equivalence class is aperiodic or equivalently, if the equivalence class contains n distinct binary strings. By an elementary Möbius inversion, (see [2]), the number of aperiodic binary circular strings of length n is given by $\frac{1}{n} \sum_{d|n} \mu(n/d) 2^d$ where μ is the Möbius function of elementary number theory.

For two strings, u, v in \mathbb{Z}_2^* we say that u is lexicographically less than v, written u < v, if

- (i) v = uw for some non-empty string $w \in \mathbb{Z}_2^*$, or
- (ii) u = ras, v = rbt for some $r, s, t \in \mathbb{Z}_2^*$ and some non-empty $a, b \in \mathbb{Z}_2^*$ with a < b.

We let L_n be the set of binary strings of length $n \ge 1$ in \mathbb{Z}_2^n which are lexicographically least in the aperiodic equivalence classes determined by \sim . The strings in L_n are called Lyndon words of length n. As above $|L_n| = \frac{1}{n} \sum_{d|n} \mu(n/d) 2^d$.

Recent interest in L_n stems from [1] and [3] where L_n is used for a code with bounded synchronization delay and where Hamilton paths are built in the *n*-cube from words in L_n . A well-known classification of Lyndon words is given in the following proposition. A proof of Proposition 1.1 may be found in [4].

Proposition 1.1. For a string w, the following statements are equivalent:

- (1) w is a Lyndon word;
- (2) w = uv where u and v are Lyndon words with u < v;
- (3) w is strictly less than each of its proper right factors.

The equivalence of 1 and 2 above yields a recursive algorithm for generating all the words in L_n but unfortunately many repetitions are generated.

Some strings are obviously Lyndon words. Namely, the words that end with 1 and begin with a string of 0's longer than any other string of 0's appearing in the word. We let \mathbb{Z}_n denote the collection of these Lyndon words that have length n

with one exception. We do not include 0 1 1 1 1 1 1 in Z_n for reasons which will become apparent later. Let $B_n = L_n \setminus Z_n$.

Example: The 18 Lyndon words in L_7 are

Z_n	$\underline{B_n}$
0000001	0010011
0000011	0101111
0000101	0101011
0000111	0110111
0001001	0111111
0001011	
0001101	
0001111	
0010101	
0010111	
0011011	
0011101	
0011111	

Fortunately, words of the type in Z_n account for most of the Lyndon words and they can all be constructed by preceeding words that end in 1 with enough zeros. In the following section we give a count of $|Z_n|$ and $|B_n|$ in terms of the $|F_n^k|$'s of Table 1.

Section 2.

Let F_n^k be the strings of length n having at least one substring of k 0's but no substring of (k + 1) 0's.

Proposition 2.1. If $0 \le n < k$ then $|F_n^k| = 0$. $|F_n^n| = 1$ and if n > k

$$|F_n^k| = \sum_{i=1}^k |F_{n-i}^k| + \sum_{i=0}^k |F_{n-k-1}^i|.$$

Proof: If n > k, every string in F_n^k can be written in the form $0 \ 0 \dots 0 \ 1 \ w$ for some string w of length n-i and some $1 \le i \le k+1$. Now there are $|F_{n-i}^k|$

strings in F_n^k of the form $0 \ 0 \dots 0 \ 1 \ w$ for $1 \le i \le k$ and there are

$$|F_{n-k-1}^0| + |F_{n-k-1}^1| + \ldots + |F_{n-k-1}^k|$$

strings in F_n^k of the form $0 \ 0 \dots 0 \ 1 \ w$.

Table 1 gives the values of $|F_n^k|$ for $0 \le n \le 20$, $0 \le k \le 10$. Notice that $|F_n^k|$ is just the number of compositions with no part greater than k and at least one part equal to k, see, for example, [5, Example 12, p. 155]. The limiting sequence $1, 2, 5, 12, 28, 64, 144, \ldots$ has (n+1)th term given by $(n+3)2^{n-2}$ for $n \ge 2$. By Proposition 2.1 the (n, k)th entry in Table 1 is obtained by adding along row n-k-1 until column k then adding down column k from row n-k to row n-1. For example,

$$1+7+5$$
 $+11$
 $+23$
 $=47$

At times, in the formulae that follow, $|F_i^k|$ with i < 0 will appear. By convention, in this case, take $|F_{-1}^0| = 1$ and $|F_i^k| = 0$ otherwise.

Theorem 2.2. $|Z_1| = |Z_2| = 0$. For $n \ge 3$,

$$|Z_n| = \sum_{k=0}^{\left[\frac{n-3}{2}\right]} \sum_{i=k}^{n-k-3} |F_i^k|.$$

Proof: Every word in Z_n can be written $\overbrace{0\ 0\ \dots 0}^i$ 1 w 1, where $w\in \bigcup_{k=0}^{i-1}F_{n-i-2}^k$. Thus we count, for n odd

and for n even

where $\overbrace{0\ 0\ldots 0}^{n-1}$ 1 is replacing $\overbrace{1\ 1\ldots 1}^{n-1}\not\in Z_n$ in the natural order of enumeration. In either case, adding down the columns yields the desired result.

Thus, $|Z_n|$ is given by adding the entries in an upper triangular block of Table 1. For example,

$$\begin{vmatrix}
1 & & & & 1 \\
+ & 1 + 1 & & & + 1 + 1 \\
|Z_7| = + & 1 + & 2 + & 1 = & 13 \text{ and } |Z_8| = + & 1 + & 2 + & 1 = & 23 \\
+ & 1 + & 4 & & + & 1 + & 4 + & 2 \\
+ & 1 & & & + & 1 + & 7 \\
& & & & & + & 1
\end{vmatrix}$$

As an easy corollary of Theorem 2.2 we get the following recursion describing $|Z_{n+1}|$. Corollary 2.3 may be expressed as adding the bottom of the triangle onto $|Z_n|$ to get $|Z_{n+1}|$.

Corollary 2.3.

$$|Z_{n+1}| = |Z_n| + \sum_{i=0}^{\left[\frac{n-2}{2}\right]} |F_{n-i-2}^i|.$$

Proof:

$$\begin{split} |Z_{n+1}| - |Z_n| \\ &= \sum_{k=0}^{\left[\frac{n-2}{2}\right]} \sum_{i=k}^{n-k-2} |F_i^k| - \sum_{k=0}^{\left[\frac{n-3}{2}\right]} \sum_{i=k}^{n-k-3} |F_i^k| = \sum_{k=0}^{\left[\frac{n-2}{2}\right]} |F_{n-k-2}^k|. \end{split}$$

We now turn our attention to $|B_n|$. Let

$$G_n^k = \left\{ w \in F_n^k \mid w^{\pi^m} \in F_n^k, \ \forall \ m \ge 0 \right\}$$

where $\pi = (1 \ 2 \dots n)$. Notice that $B_n = L_n \cap \bigcup_k G_n^k$. This is why we included $0 \ 1 \ 1 \dots 1$ in B_n instead of Z_n . Let

$$D_n^k(m) = \left\{ w \in G_n^k \mid w = v^m \text{ for some string } v \right\}.$$

Proposition 2.4.

$$|B_n| = \frac{1}{n} \sum_{k=1}^{\left[\frac{n}{2}\right]-1} \sum_{d|n} \mu(n/d) \mid D_n^k(d)|.$$

Proof: Let $S_n^k(m) = \{w \in D_n^k(m) \mid w \neq v^r \text{ for } r < m\}$. Then $|D_n^k(n)| = \sum_{d|n} S_n^k(d)$ so by Möbius inversion,

$$|S_n^k(n)| = \sum_{d|n} \mu(n/d) |D_n^k(d)|$$

and thus the result follows.

Proposition 2.5. $|D_n^k(1)| = 0$ for k < n, $|D_n^k(n)| = |G_n^k|$, and for $d|n, d \neq 1, n$

$$|D_n^k(d)| = \sum_{i=0}^k (i|F_{d-i-1}^k| + (k+1)|F_{d-k-2}^i|).$$

Proof: For $d|n, d \neq 1$, n notice that a string in $D_n^k(d)$ must be a repeated string of length d. There are $|F_{d-i-j-2}^k|$ of them that have the form of repeating $0 \ 0 \dots 0$ $1 \ w \ 1 \ 0 \ 0 \dots 0$ where $0 \le i, j \le k-1$ and i+j < k. Hence a total of

$$\sum_{\substack{0 \leq i,j \leq k-1 \\ i+j < k}} |F_{d-i-j-2}^k| = \sum_{i=1}^k i |F_{d-i-1}^k|.$$

All other strings in $D_n^k(d)$ must have the form of repeating $0 0 \dots 0 1 w 1 0 0 \dots 0$ where $0 \le i, j \le k$ and i + j = k. There are $\sum_{m=0}^k F_{d-i-j-2}^m$ of these. Summing over all i, j with i + j = k yields a total of $\sum_{i=0}^k (k+1)|F_{d-k-2}^i|$. Notice above

that the string $0 0 \dots 0 1 0 0 \dots 0$ is counted by F_{-1}^0 .

By Proposition 2.4 and Proposition 2.5 we see that in order to write $|B_n|$ in terms of the $|F_n^k|$'s it suffices to concentrate on the $|G_n^k|$'s. Let H_n^k denote the collection of strings in F_n^k having at least two substrings of k 0's.

Proposition 2.6. $|G_n^1| = |F_{n-1}^1| + |F_{n-3}^1| + 1$ and for k > 1

$$|G_n^k| = \sum_{i=1}^k i |H_{n-i-1}^k| + (k+1)|F_{n-k-2}^k|.$$

Proof: For k=1, there are $|F_{n-1}^1|$ strings in G_n^1 of the form 1 w and $|F_{n-3}^1|+|F_{n-3}^0|$ strings in G_n^1 of the form 0 1 w 1. For k>1, there are $|H_{n-i-j-2}^k|$ strings in G_n^k of the form 0 0 ... 0 1 w 1 0 0 ... 0 where $0 \le i, j \le k-1$ with i+j < k yielding a total of $\sum_{i=1}^k i |H_{n-i-1}^k|$. All other strings in $|G_n^k|$ have the form 0 0 ... 0 1 w 1 0 0 ... 0 where $0 \le i, j \le k$ and i+j=k. There are $|F_{n-i-j-2}^k|$ of these. Summing over all i,j with i+j=k yields $(k+1)|F_{n-k-2}|$.

Proposition 2.7.

$$|H_n^k| = \sum_{i=0}^k |H_{n-i}^k| + |F_{n-k-1}^k|.$$

Proof: Every string in H_n^k can be written $0 \ 0 \dots 0 \ 1 \ w$ with i < k and $w \in H_{n-i-1}^k$ or $0 \ 0 \dots 0 \ 1 w$ with $w \in F_{n-k-1}^k$. Now, there are $|H_{n-i-1}^k|$ of the first type and $|F_{n-k-1}^k|$ of the second. Hence, $|H_n^k| = \sum_{i=0}^{k-1} |H_{n-i-1}^k| + |F_{n-k-1}^k|$. We let f_n^k be the kth-generalized Fibonacci sequence, that is,

$$f_n^k = \begin{cases} 1 & \text{if } n = 0 \\ 2^{n-1} & \text{if } 1 \le n \le k \\ \sum_{i=n-k}^{n-1} f_i^k & \text{if } n > k. \end{cases}$$

Proposition 2.8.

$$|H_n^k| = \sum_{i=1}^{n-2k} f_{i-1}^k |F_{n-k-i}^k|.$$

Proof: We induct on n. By Proposition 2.7,

$$|H_n^k| = \sum_{i=0}^{k-1} |H_{n-i-1}^k| + |F_{n-k-1}^k|.$$

By induction we have

$$\begin{split} |H_{n}^{k}| = & f_{0}^{k} |F_{n-k-2}| + f_{1}^{k} |F_{n-k-3}^{k}| + \dots + f_{n-2k-2}^{k} |F_{k}^{k}| \\ & + f_{0}^{k} |F_{n-k-3}^{k}| + \dots + f_{n-2k-3}^{k} |F_{k}^{k}| \\ & + \ddots \\ & \vdots & \ddots \\ & + f_{0}^{k} |F_{n-2k-1}^{k}| + \dots + f_{n-3k-1}^{k} |F_{k}^{k}| + |F_{n-k-1}^{k}| \end{split}$$

Adding columns yields

$$|H_n^k| = f_1^k |F_{n-k-2}^k| + f_2^k |F_{n-k-3}^k| + \dots + f_{n-2k-1}^k |F_k^k| + f_0^k |F_{n-k-1}^k|$$

since
$$1 = f_0^k = f_1^k$$
, $\sum_{i=1}^s f_i^k = f_{s+1}^k$ for $s < k$ and $\sum_{i=r-k}^{r-1} f_i^k = f_r^k$.

We note in closing that even the generalized Fibonacci coefficients of Proposition 2.8 can be written in terms of the $|F_n^k|$'s as partial row sums.

Theorem 2.9.

$$f_n^k = \sum_{i=0}^{k-1} |F_{n-1}^i|.$$

Proof: For n = 0 notice that $f_n^k = 1$ and

$$\sum_{i=0}^{k-1} |F_{n-1}^i| = |F_{-1}^0| + |F_{-1}^1| + \dots + |F_{-1}^{k-1}| = 1.$$

For $2 \le n \le k$, $f_n^k = 2^{n-1}$ and

$$\sum_{i=0}^{k-1} |F_{n-1}^i| = |F_{n-1}^0| + \ldots + |F_{n-1}^{n-1}|$$

which is a count of all binary strings of length n-1 and hence equal to 2^{n-1} . For n > k we induct on n.

$$\begin{split} f_{n}^{k} &= \sum_{i=n-k}^{n-1} f_{i}^{k} = \sum_{i=0}^{k-1} |F_{n-k-1}^{i}| + \sum_{i=0}^{k-1} |F_{n-k}^{i}| + \ldots + \sum_{i=0}^{k-1} |F_{n-2}^{i}| \\ &= \frac{|F_{n-k-1}^{0}| + |F_{n-k-1}^{1}| + \cdots + |F_{n-k-1}^{k-1}|}{|F_{n-k}^{0}| + |F_{n-k}^{1}| + \cdots + |F_{n-k-1}^{k-1}|} \\ &+ \frac{|F_{n-k}^{0}| + |F_{n-k}^{1}| + \cdots + |F_{n-k}^{k-1}|}{|F_{n-2}^{0}| + |F_{n-2}^{1}|} \\ &+ \frac{|F_{n-2}^{0}| + |F_{n-2}^{1}|}{|F_{n-2}^{0}| + |F_{n-1}^{1}|} + \cdots + |F_{n-1}^{k-1}| + |F_{n-1}^{k-1}| \\ &= |F_{n-1}^{0}| + |F_{n-1}^{1}| + \cdots + |F_{n-1}^{k-2}| + |F_{n-1}^{k-1}| \end{split}$$

TABLE 1 ($|F_n^k|$)

k n	0	1	2	3	4	5	6	7	8	9	10
-0	1	0	0	0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0	0
2	1	2	1	0	0	0	0	0	0	0	0
3	1	4	2	1	0	0	0	0	0	0	0
4	1	7	5	2	1	0	0	0	0	0	0
5	1	12	11	5	2	1	0	0	0	0	0
6	1	20	23	12	5	2	1	0	0	0	0
7	1	33	47	27	12	5	2	1	0	0	0
8	1	54	94	59	28	12	5	2	1	0	0
9	1	88	185	127	63	28	12	5	2	1	0
10	1	143	360	269	139	64	28	12	5	2	1
11	1	232	694	563	303	143	64	28	12	5	2
12	1	376	1328	1167	653	315	144	64	28	12	5
13	1	609	2526	2400	1394	687	319	144	64	28	12
14	1	986	4781	4903	2953	1485	699	320	144	64	28
15	1	1596	9012	9960	6215	3186	1519	703	320	144	64
16	1	2583	16929	20135	13008	6792	3277	1531	704	320	144
17	1	4180	31709	40534	27095	14401	7026	3311	1535	704	320
18	1	6764	59247	81300	56201	30391	14984	7117	3323	1536	704
19	1	10945	110469	162538	116143	63872	31808	15218	7151	3327	1536
20	1			324020	239231	133751	67249	32392	15309	7163	3328

References

- 1. L. Cummings, Connectivity of synchronizable codes in the n-cube, JCMCC 3 (to appear).
- 2. S. Golomb, *A Mathematical Theory of Discrete Classification*, in "Proceedings of the Fourth London Symposium on Information Theory", Butterworths, London, 1961.
- 3. S. Golomb and B. Gordon, *Codes with bounded synchronization delay*, Info. and Control 8 (1965), 355-372.
- 4. M. Lothaire, "Combinatorics on Words", Addison-Wesley, Reading, Mass., 1983.
- 5. J. Riordan, "An Introduction to Combinatorial Analysis", Wiley, New York, 1958.