A Lattice Generated by (0, 1)-Matrices
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Abstract. We study the lattice generated by the class of m by n matrices of 0’s and
1’s with a fixed row sum vector and a fixed column sum vector.

1. Introduction
LetR = (r,---,rm) and S = (sy,---,38,) be positive integral vectors such
thatry + -+ 7y = 81 + -- - + 8,. Let A(R, S) denote the class of all m by n
(0, 1)-matrices having row sum vector R and column sum vector S. We assume
without loss of generality that vy > --- > r,, and that s; > .-- > s,. There are
well known necessary and sufficient conditions in order that the class A( R, S) be
nonempty (see e.g. [Rys]) and we assume throughout that they are satisfied. The
class A(R, S) has been well studied (see the survey paper [Bru]), and as is well
known it can be identified with the set of all labelled bipartite graphs such that the
degree sequence for the vertices in one set of the vertex-bipartition is R and in the
other is S. Recently there has been some interest in studying the (integer) lattices
generated by combinatorially defined sets of vectors. The reason is threefold: (i)
Some interesting lattices (and questions concerning them) may result. (ii) The
lattices may shed some light on the combinatorially defined sets. (iii) The role
of lattices in combinatorics may become clearer. For example, in [Lovl] and
[Lov2] the lattice generated by the perfect matchings of a graph is described, in
[JunLec1] the lattice generated by the n-tuples of 0’s and 1’s with a fixed number
of 1’s is studied while in [JunLec2] the lattice generated by the incidence vectors
of perfect 2-matchings of a graph is studied, and in [Rie] the lattice generated by
the incidence vectors of the bases of a matroid is investigated. In this note we
study the lattice generated by the matrices in A(R, S). There are a number of
results in the literature which directly or indirectly have some consequences for
this lattice, and one of our aims is to point out these results.
Consider a class A(R, S), which as pointed out above is always assumed
to be nonempty. We make one assumption about this class which is without any
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essential loss of generality. A position s called aninvariant f-position of A(R,S)
provided every matrix in the class has a 1 in that position. An invariant O-position
is defined in a similar way and we refer to invariant 1-positions and invariant
0-positions collectively as invariant positions. A theorem of Ryser (see [Rys])
asserts that the class .A( R, S) has an invariant 1-position if and only if there exist
positive integers e and f such that every matrix in the class has a decomposition

of the form P 2
ef 1
[ A2 Om—c,w— ’i ] (l)

where J.s denotes an e by f matrix of all 1’s and Om—enf denotes a m — e by
n— f zero matrix. When (1) holds the ef positions in the upper left are invari-
ant 1-positions and the (m — e)(n— f) positions in the lower right are invariant
0-positions. Because we are assuming that the vectors R and S are positive vec-
tors the class has invariant 1-positions whenever it has invariant 0-positions. The
matrices A; and A in (1) each determine a class of matrices with fixed row sum
vector and fixed column sum vector, and the study of A(R, S) essentially reduces
to the study of these two classes.

Let ¢ be the number of matrices in the class A(R, S),and let A;,--- , As be
a listing of the matrices in this class. We define the lattice

t
L(R,S) := {EC;A,‘ 1G € z} , [0)

i=1

the set of all integral linear combinations of the matrices in A(R, S) . IfX =[]
andY = [y;;] are m by n matrices, then their inner product is

XoY := E TijYij-
i=1,j=1
The dual lattice of L(R, S) is the lattice
L*R,S) ={X€eQ™:XoB¢€Z foral Be L(R,S)}, 3)

the set of all rational m by » matrices whose inner product with each matrix in
L(R,S) is an integer. We also define the linear space

t

lin(R,S) := {Z At G real}, @

i=1

the set of all real linear combinations of matrices in A( R, S). Finally we define
linz(R,S) := lin(R,S) N Z™", ()

the set of all integral matrices in lin( R, S) .
In the next sections we study the four sets in (2)~(5).
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2. The lattice L(R, S)

We shall make use of the following result from [BruHarHwa, Theorem 2.1] and
[LewLiuLiu, Theorem 1].

Proposition 1. An m by n matrix X = [x;;] with real entries can be expressed
as a linear combination of the matrices in A( R, S) with nonnegative coefficients
if and only if there is a nonnegative number q such that the row sum vector of
X is qR, the column sum vector of X is ¢S,and 0 < z;; < g (1 <1< m,
1<j7<n). 1

Corollary 1. An m by n matrix X with real entries can be expressed as a linear

combination of matrices in A( R, S) with nonnegative integer coefficients if and
only if X is an nonnegative integral matrix satisfying the properties in Proposition
L

Proof: Suppose that X is a nonnegative integral matrix satisfying the properties
in Proposition 1. It follows from Proposition 1 that there is a matrix A € A(R, S)
such that X has positive entries in those positions in which A has 1’s and A has 1°s
in those positions in which X has ¢’s. The matrix X' = X — Aisa nonnegatwe
integral matrix satisfying the properties in Proposition 1 with g replaced with g—1

Itnow follows by induction on ¢ that X is a nonnegative integer linear combination
of the matrices in A( R, S). The converse is trivial. 1

We define
JR,SZ=A1+~--+At, (6)

the sum of all matrices in A( R, S). The row sum and column sum vectors of Jp.s
are, respectively, t R and tS. If A( R, S) has no invariant positions, then it follows
that each entry of Jg ¢ is an integer between 1 and ¢ — 1.

We use the above proposition to characterize lin( R, S).

Proposition 2. Assume that the class A( R, S) has no invariant positions. An m
by n real matrix belongs to lin R, S) if and only if there is a real number q such
that its row sum vector is qR and its column sum vector is ¢S.

Proof: Let X be an m by nreal matrix with row sum vector ¢ R and column sum
vector ¢S for some ¢. Since there are no invariant 0-positions, it is possible to
choose an integer k large enough so that the matrix X' := X + kJg,s has all of its
entries nonnegative, and row sum vector equal to ¢’ R and column sum vector equal
to ¢'S where ¢' := ¢ + k is positive. By Proposition 1, X' is a nonnegative linear
combination of the matrices in A( R, S), and it follows that that X € lin( R, S).
The converse is trivial. [ |

We now characterize the lattice of all integer linear combinations of the ma-
trices in A(R, S).
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Theorem 1. Assume that the class A(R,S) has no invariant positions. Then
L(R,S) consists of all m by n integral matrices X for which there exists an
integer q such that the row sum vector of X is qR and the column sum vector of
X isqS.

Proof: We first observe that each matrix X in L(R, S) satisfies the condition in
the theorem. Now suppose that X = [ z;;] is an m by n integral matrix with row
sum vector g R and column sum vector ¢S for some integer ¢. Let p be an integer.
Since pJg,s is in C(R, S) , it follows that X isin L(R, S5) ifandonly if X +pJg s
isin L(R, S). Since Jp s is a positive matrix, X + Jg,s is a nonnegative matrix
for p large enough. Hence it suffices to assume that X is a nonnegative matrix. If
z;; < gforalls, j,then X € L(R, S) by Corollary 1. Since X = cJ. rs—(cJrs—
X) for each integer c, it suffices to show that there exists a positive integer c such
that cJps — X € L(R,S). Since A(R, S) has no invariant positions each entry
of Jp,s = [ fi;] is less than ¢ (the number of matrices in A( R, S)), and we may
choose c large enough so that the matrix G = [g;j] := cJp,s — X satisfies

ij >0
{ Y95 =(ct—qn )
i = (ct—q)s;.

Since f;; < t, we have c( f;; —t) < 0. Hence for c large enough,
g+co(fi; —1) £0 L 353

Thus
0<Lgij=cfij—zij <ct—g

for all 4, 7. We now apply Corollary 1 to G and conclude that G and hence X
belongs to L(R, S). 1

As a corollary we obtain the main result in [JunLec1].

Corollary 2. Let nand k be integers with 1 < k < n— 1, and let Ly, be the
lattice generated by all n-tuples of 0 ’s and 1’s with exactly k 1°s. Then Lo
consists of all integral n-tuples the sum of whose components is divisible by k.

Proof: LetR= (k,n—k) andletS = (1,1,---,1),the n-tuple of all 1’s. Since
1 < k < n—1, the class A( R, S) has no invariant positions. Hence by Theorem
1, A(R, S) consists of all integral matrices with row sum vector (gk,g(n — k))
and column sum vector (g, q, - - - , g) for some integer g. The lattice L, consists
of all the first rows of the matrices in the lattice Ap,gs and the result follows. @I
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Corollary 3. Assume that the class A( R, S) has no invariant positions, and also
assume that the integers ry, - - - , Ty, are relatively prime. Then

L(R,S) = ling(R, S).

Proof: Suppose that X € ling(R,S). Since X € lin( R, S), X has row sum
vector ¢ R and column sum vector ¢S for some ¢. Since X is an integral matrix,
gR and ¢S are integral vectors. Because 71, - - - , 7, are relatively prime integers
and gR is an integral vector, it follows that g is an integer. Hence by Theorem 1,
X € L(R,S). The reverse implication is obvious. ]

We remark that the conclusion in the preceding corollary does not hold if
the assumption of the relative primeness of the components of R is dropped. For
instance, let R = S = (2,2,2). By Theorem 1, the identity matrix I3 of order 3
does not belong to the lattice L( R, S). But I3 € linz( R, S) since

1 1 1
I3—-2-A1+EA2—§A3
where
rl1 1 07
Air=10 1 1],
1 0 1.
(1 0 17
Ay=11 1 0},
0 1 1]
and
r0 1 17
Ay={(1 0 1].
1 1 0

We now show that Theorem 1 is not valid without the assumption that the
class has no invariant positions. Indeed we show that if m and n are integers with
m,n>2,and R=(ry,---,7y) and S = (s1,--- , 8,) are any positive integral
vectors such that the class A( R, S) is nonempty and has invariant 1-positions,
then there is an integral matrix with row sum vector R and column sum vector
S which does not belong to L(R,S). Assume that A(R,S) has invariant 1-
positions. By the theorem of Ryser there are positive integers e and f such that
every matrix in A( R, S) has the form (1). It is well known (see e.g. [JurRys])
that there is a nonnegative integral matrix X with row sum vector R and column
sum vector S such that the entry in the lower right corner of X is the minimum
of r,, and s,. Since this minimum is not zero, X ¢ L(R,S) unless perhaps if
e = mor f = n. Suppose that e = m. Then every matrix in L(R, S) has a

187



constant first column. But it is easy to construct a matrix X of the desired type
without a constant first column when n > 2. The case f = n s similar.

We now exhibit a basis for the lattice L( R, S). By a theorem of Ryser (see
[Rys] or [Bru]) any matrix in A(R, S) can be transformed into any other by a
sequence of interchanges, where an interchange is the replacement of one of the
following two submatrices by the other:

1 0 0 1
01> 10

Let Cy, » denote the set of all m by = matrices all of whose entries are 0
except for those in a 2 by 2 submatrix X where X is equal to the difference (in
some order) of the two matrices above. Then Cp,» C L(R, S) and it follows from
Ryser’s theorem that for any matrix A € A(R,S), {A} UCn, spans L(R, S)
over the integers Z. Now it is well known that there are mn— m — n+ 1 matrices
in Cyy, » Which are linearly independent such that every other matrix in C,, ,, can be
obtained as an integer linear combination. We conclude that the dimension of the
lattice L( R, S) satisfies

dim L(R,S) =mn—m —n+ 2, 8)
and that we have many nice choices for a basis. For example, if A is any matrix
in A(R, S) (or any matrix in C( R, S) with nonzero row sums and column sums),
then A and the set C},, of mn — m — n+ 1 matrices which have a 1 in the
(1,1) and (3, /) positions, anda —1 in the (1, 5) and (4, 1) positions (1 < i < m,

1 < j < n) form abasis of C( R, S). We note that the basis for £, (see Corollary
2) given in [JunLec1] results in this way by choosing the matrix A to be

k o --- 0
—(k-1) 1 ... 1]

We now consider the dual lattice £*( R, S). We define the latticeof L(R, S)-
orthogonal matrices to be

L(R,8):={X€Q™: XoB=0 forall B€ L(R,S5)}.

Clearly £L°(R,S) C L*(R, S),and in addition we have Z™" C L*(R,S).

Theorem 2. Let R = (71, ,Tm) and S = (381, -- ,8,) be integral vectors
and let d be the greatest common divisorof Ty, -+ ,Tm,81,+-+ ,8s. Then

L*(R,S) = L°(R,S) +d~'Z2™",
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that is, every matrix in L*( R, S) is the sum of a L( R, S) -orthogonal matrix and
1/d times an integral matrix.

Proof: Let X be a matrix in L*(R, S). Since X o B € Z forall B € L(R, S),
it follows that X o C € Z for all C € Cp,». There exists an integral matrix G
such that (X — G) o C = 0 for all C € C;, ,, (the first row and first column of
G can be chosen to consist of all 0’s and then G is uniquely determined). Let
Y = X — G = [y;;]. Since every matrix in Cy, , is an integer linear combination
of the matrices in C;, ,, it follows thatY o C = 0 for all C € Cp 5. Itis well known
(see e.g. [Ber]) that there exist rational numbers a1, -- - , G, b1, - - - , by, such that
yij = a; + b; for all 1 and j. Hence forall A € A(R,S) wehaveq := AoY
where q is the integer given by

g=a1T1+ -+ QT + b18; + - - - + by8,.

Sincery,--- ,Tm, 81, - , 8, have greatest common divisor d, there exist integers
€1, ** ,em, f1,- -+, fa such that

gd=eiri+ - -+enpTm+ fisi+ -+ fos,.

Let H = [h;;] be the m by n integral matrix defined by h;; = e; + f; forall + and
j. ThenAod™1H = gforall A € A(R, S) and hence

Ao (X -G—-d'H)=Ao(Y —-d'H)=0

forall A € A(R,S). Thus X — G —d~'H € L°(R,S). Since X = (X - G —
d'H) +(G+d ' H) where G+ d~' H € d~! Z™", the theorem now follows. §

Corollary 4. Let R = (r1,--- ,7m) and S = (s1,---,8,) be integral vec-
tors such that ry,--- ,Tm, 81, - , 8y are relatively prime. Then every matrix in
L*(R, S) is the sum of an L( R, S) -orthogonal matrix and an integral matrix. W

We remark that the preceding corollary does not hold if we remove the as-
sumption of relative primeness. Forexample,letR = (2,2,2) and S = (2,2,2).
Then the matrix X defined by

1
2
0

is in £L*(R, S), but it is easy to verify that X is not the sum of an L(R, S)-
orthogonal matrix and an integral matrix.

We conclude with some remarks. The results reported here hold under more
general circumstances. Let P = [p;;] be an m by n matrix of 0’s and 1’s. The
class A(R,S) can be replaced by the class Ap( R, S) of all m by n matrices of

S O
S O
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0’s and 1’s with row sum vector R and column sum vector S having 0’s in those
positions where P has 0’s (and possibly elsewhere). Invariant positions now refer
only to those positions of P occupied by a 1, that is, to those positions which are
not automatically zero in A,(R, S). Provided we assume that P is connected
in the sense that its associated bipartite graph is connected, then the dimension
formula becomes dim L,(R,S) = o(P) —m —n+ 2, where o( P) equals the
number of 1°s of P. Thus the results apply, in particular, to the matching lattice
of a matching covered connected bipartite graph (see[Lov1] and [Lov2]).
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