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Abstract. The problem of fairly dividing a piece of cake apparently originates with
Hugo Steinhaus in 1948 at which time he raised the question of the number of cuts
required in fair division algorithms. In this paper an algorithm requiring O(nlog n)
cuts is given, improving known algorithms which require O(n?) or more cuts. The
algorithm is shown to be optimal in a certain class, and general algorithms are shown
to allow a certain freedom of participants to choose pieces.

1. Introduction

The problem of fairly dividing a cake among n persons apparently originates
with Hugo Steinhaus in 1948 [5]. He wrote at the time; “Having found during
the war a solution for three partners, I proposed the problem for » partners to B.
Knaster and S. Banach.” They solved the general problem but Steinhaus went
on to say; “Interesting mathematical problems arise if we are to determine the
minimal number of cuts necessary for fair division.” If he said anything more on
the latter issue we apparently have no record of it.

Following the formulation given by Woodall [7], the general problem of fair
division among n players { P, ..., P,} assumes a "cake" X which is a compact
set in Euclidean space and probability measures u;, 1 < i < n, on X where the
ui-measurable subsets of X are the Lebesgue-measurable subsets of X . It is also
assumed that if the Lebesgue measure of a subset is zero so is its u; measure for
each 1.

A fair division requires a partition X = Sy U ---U S, of the cake into ;-
measurable subsets so that person P; thinks piece S; is “fair.” Different degrees
of fairness can be sought. For example “fair” can mean:

L pi(S) >Lfori=1,2,...,nor
IL pi(S) > Lfori=1,2,...,n0r
ML ps(Si) > pi(Sy) foralliand j or

IV. pi(S;) = L forall i and j.

Clearly requirement I is the weakest of the four. A number of algorithms are
known for I, see [4], [5] and [7]. An existence solution for II is given in [2] and
[3] provided the measures are not all identical; assuming the existence of a piece
S for which p;(S) # p;(S) for some i,j an algorithm for II is given in [8].
An algorithm for III is known for three persons, see [6] and [7], while existence
of solutions for III and IV is proved in [1],[2], [6] and [7]. Alon [I] proves the
existence of a solution for IV involving only 7> — n cuts, the best possible, but it
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seems implausible that there could exist an algorithm for IV that would terminate
in any finite number of cuts. Concerning Steinhaus’s remark, we note that classical
algorithms for problem I generate n! or -;-(n2 — n) pieces of cake [7] . In this
paper we give an algorithm which requires O(nlog n) pieces.

We first place restrictions on the algorithm which will guarantee that it be finite.
The algorithm is allowed to branch but it is required that:

1. Only a finite number of times will any player be asked to cut an existing
piece into two smaller pieces.

2. Each time P; is required to make a cut the values of y; on the two new
pieces are prescribed in advance of the cut by the algorithm, It is assumed
P; can make the required cut.

3. Only finitely many times will each player be required to evaluate the finite
number of pieces at that stage.

In particular, the well known “moving knife” algorithm is eliminated. “Piece”
is interpreted to mean a subset of X with non-empty interior. The boundaries are
ignored in light of the assumption that sets with Lebesgue measure zero also have
14 Measure Zero.

We now return to Steinhaus’s question. Let us denote by M (n), the minimal
number of cuts required in any fair division algorithm of the cake for n players,
where “fair” is defined by requirement I above. The algorithm is assumed to sat-
isfy 1-3. "You cut I choose" establishes M(2) = 1.

We next show M(3) = 3. Suppose an aigorithm exists which uses only two
cuts. We may suppose that P, makes the first cut, resulting in pieces A and B such
that s (A) = rand p1(B) = 1 —r where the value r, 3 < r < 1, is specified by
the algorithm. Since the algorithm must allow for any evaluations by P, and Ps
we may assume that 2 (4) = p3(A) = 3 and 2 (B) = pa(B) = %.

If any player now cuts B into pieces B; and Bz, then the other two players
may both evaluate both B; and B, as less than . But since no further cuts are
allowed, one of these two players must be assigned either B; or Bz, and so would
not be satisfied. Similarly if P cuts A then both P, and P; may evaluate both of
the resulting pieces as less than % Again some player would not be satisficd.

Finally, if P, (or equivalently P;) cuts A into pieces A; and A3 such that
p2(A1) = 8,p2(Ay) = g— —s,where0 < s < 13—0 is specified by the algo-
rithm, then we may assume p1(A;) = p3(A41) = 13—0 since the algorithm must
allow any evaluation. Now no player will accept piece Aj.

Algorithms requiring at most three cuts are known. In particular we will now see
a class of algorithms for any number of players which yields a three cut solution
for three players.
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2. The Class of Algorithms A.

We now describe a specific class of algorithms A for fair division (for interpre-
tation I) which satisfies 1-3. Let m(n) be the minimum number of cuts required
for fair division for n players, where the minimum is taken over all algorithms in
A (so M(n) < m(n)); we will establish a closed form for m(n). The class A
is recursive, breaking the problem for n players into two smaller problems for k;
and k, players where k; + ky = n. It is assumed m(k;) and m(k,) are known
fork; < n

Note that any collection of pieces of cake can be thought of as a single piece
for cutting purposes. For, if H = A; U --- U A; is a holding of k pieces and
s+t = u;(H), then P; can divide H in the ratio s : t by cutting a piece of size
pi(Ar) + - -+ pi(Aj) — s off the first A; for which this is positive.

Assume we are given positive integers ki and k; such that k; + k2 = n,and a
piece (or holding) A of cake. Our algorithm D(k; , k) will produce two holdings
H, and H, as well as sets of players K; and K, such that:

HUH,=A, HiNH, =0,

|K1| = ki1, |K2|=k2, KiNK;y =0,
pi(Hy) > (ki/m)pi(A) if P; € K1, and
pi(Hz) > (k2 /m)ui(A) if P; € K».

The algorithm is based on the idea of having n— 1 of the players make parallel
cuts in the cake dividing it in the ratio ki: k2, and letting the remaining player
decide whether H; is to be the union of the first k; or the first k; — 1 pieces.
Indeed, in the worst case our algorithm is no better than this. But its average
performance is better because we can often identify players who do not need to
make a cut.

At a typical stage, A will be of the form A; U---UA;UXUYUB,U---UBy,
where the last cut was made between X andY. Let H; = A U---UA4;UX
and H, = B;U---U B, UY. We will say that P; accepts H if us(H1) >
(k1/m) pi( A), that P; is stable on H, if P; accepts A; U ---U Aj (in the same
sense), and that P; initials X if P; accepts H, but is not stable on H;. We say that
H, is deficient if fewer than k, players accept H,. Identical terminology is used
for H,. Not both H; and H, can be deficient at any stage since each player must
accept either H; or H.

Consider a partition of A into two holdings H; and H; satisfying:

L. Hh=AU---UAjUX H, = BiU---UB,UY.

I,. Atleast one player initials both X and Y.

I;. Only s; players are stable on H; with s; < ky.
Only s, players are stable on H, with s; < kj.

™
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I4. One holding is deficient.
Is. If H, is deficient some player initials Y but not X , if H, is deficient some
player initials X butnotY.

Lemma.
(a) A partition that satisfies I — I, also satisfies Is.
(b) A partition that satisfies I — I3 but not I yields a solution to (*).

Proof:

(@) Assume H, is deficient but all ¢ players who initial Y" also initial X. Let z
be the number of players who initial X butnotY. Thens; + s +t+ z =
n=ki+kysosy+t+z=k + (k2 —32) >k which contradicts the
assumption that H; was deficient.

(b) Assume n; players accept Hy,m accept H,, r players accept both H;
and Hy,m > ki and m > k;. Assign the n; — r players accepting only
H, as well as k; — (m — r) accepting both holdings to set K. Assign
the other players to K.

The Deficit Reduction Algorithm D(k,,k2)

Initial Step:With A, k; and k, given, ask P; tocut A,A = X UY so that
p1(X) = (k1/m)p1(A) and p1(Y) = (k2/n)p1(A). Form holdings H; =
X, H, =Y. Note that I; — I3 hold. I is obvious, P; initials both X and Y" so
I, holds, and no player is stable yet so I3 holds.

Iterative Step:Suppose that I; — I3 hold. If neither holding is deficient then
stop; else assume H, is deficient and player P, initials Y butnot X. (B, exists
by part (a) of the Lemma.) Instruct P, to cut Y in pieces Y and Y such that
py(A1U---UA;UXUYY) = (k1 /m)py(A) and py (B U---UByUY,) =
(k2 /m) py(A). Relabel X as A;,1,Y; as X, and Y, as Y. Redefine H; =
A U'--UA,'+1 UX,H; = By U---UBiUY.

Theorem 1. In at most n— 1 cuts D(ky, ky) produces holdings and sets satis-
fying (%).

Proof: To prove that the algorithm is well defined, we must checkthat I} — I3
hold after every iterative step. I is obvious, as is I because Py initials both X
and Y. To see that I3 holds, assuming H; was previously deficient, we see that
s, does not change since By U --- U By does not change. The new stable set
on H, is increased by the players who initialed X at the previous stage. Thus
s; remains smaller than k; because the previous H; was deficient. Thus, the
algorithm continues until I; — I3 hold but I, doesn’t, when it yields a solution to
(*) by part (b) of the Lemma.
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It only remains to show the algorithm stops after n — 1 or fewer cuts. We sce
at each stage after the first, a new player becomes stable, namely the person at the
previous stage who initialed both X and Y. After n— 1 cuts we are sure of n— 2
stable players. If H; was the deficient holding before this last cut we know s; <
k1 —2 then, otherwise H; would not have been deficient (since at least one player
initials X by I,.) Since at that stage there were atleast n—3 = (k; —2) + (k2 —1)
stable players it follows from I3 that s; = k; — 2 while s, = k; — 1. Adding
the new stable player on H; after the (n — 1) st cut we have s; > k; — 1 and
82 > ka — 1. There are now at most two nonstable players including the last cutter
who accepts both H; and H;. If the remaining player accepts H;, let K; comprise
that player and the k; — 1 players who are stable on H;. The other set is the cutter
and the players stable on the other holding. This completes the proof. 1

Theorem 2. For any fixed values of ki and ky(k, + k; = m), D(k1,k3) may
require all n— 1 cuts.

Proof: Assume k; < k3. Let P; denote the cutter in the ith step. The following
situation may occur.
After the ith step (1 < i < ky — 1), P; accepts Hy and Hy, P, --- , Py
are stable on H, the remaining n — i players accept H; but not H,, so H; is
deficient,
After the ith step (k2 < i < n—2), P;accepts Hy and Hy, P, --- , Py, are
stable on Hj, Py,, ..., P;_; are stable on H1, the remaining n— ¢ players accept
H, butnot Hy, so H; is deficient.
Thus we see that the (n — 1) st cut may be required. [ |
Notice that D(1, 1) is “one cuts the other chooses,” so m(2) = 1. For larger
n, D(ky, k2) produces sets K; and K, whose players can perform D( s;, t;) on H;
where s; and ¢; are positive integers satisfying s; + t; = k;. Repeated applications
produce a fair division for the n players. To compute m(3) perform D(1,2) (the
only choice) arriving at sets Ky, K5,|K1| = 1,|K3| = 2 after two cuts. Thus
m(3) =2+ m(1) + m(2) =3 = M(3).
Theorem 3. The sequence m(mn) is generated from m(1) = 0 by the recursion
m(n) = (n— 1) + m(k1) + m(kz), where k; = |4n] and k = [1n]

Proof: We have seen that m(1) = 0,m(2) = 1 and m(3) = 3, so that the se-
quence m( 1), m(2), m(3) is convex. Itis evident that if the sequence m(1),- - - ,
m(n — 1) is convex, then the choice of k; and k, in the theorem minimizes
m( k1) + m(kz) overall choices such that k; + k; = n. This choice also preserves
the convexity of m, since

m(n) —m(n—1) =14+ m( [%n]) —m( [%n] -1,

and this is (weakly) increasing with nby the convexity of m(1),--- ,m(n—1).
We now can give the closed form for the sequence m(n).
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Theorem 4. The minimal number of cuts required in the class A of algorithms
for fair division is m(n) = n(|logan] + 1) — 2 Logan+1 4 1.

This follows easily from Theorem 3 using induction on n. 1

3. Choice versus Assignment of Holdings - An Application of Matching in

Graphs.

Three versions of “fair” given earlier can be interpreted as matching problems
in graphs. With n players, an algorithm produces n holdings which are to be
distributed, one holding to each player. If we let Vi be the set of players and
V, the set of holdings to be distributed, we can define three bipartite graphs with
vertex set V; U Va whose only edges are given by:

Gr: Join vertex P; € V; to holding H; € Vzif and only if u;( H;) >

Gqr: Join vertex P; € V; to holding H; € V3 if and only if p;( H;) >
Giir: Join vertex P; € V; to holding H; € V if and only if p;( H;) > pi(H)
forallk # j.

The algorithm has produced a solution for the particular interpretation of “fair”
if and only if it has assigned a matching in the corresponding graph. But in G
and G some edges could be preferred by the players to the ones assigned by
the algorithm since they would represent a larger holding than another acceptable
holding. To what extent can choices be allowed and a matching still exist? Simple
examples show that solutions to problem I do not always produce solutions to
problem III. However in any solution to problem I some choosing of holdings is
always possible. In particular an ordering of the players exists s that the players
can choose acceptable holdings in that order subject to the restriction that no one
selects a previously chosen holding. The following theorem formalizes the result.

C R

N L

Theorem 5. If an algorithm produces holdings which can be assigned to n play-
ers so that fair division is thereby accomplished under interpretation I above, then
the players and holdings can be ordered so that

1
pi( Hy) = maz{p:(H;) : j > i} > -r;fori= 1,2,...,n

Proof: In order to have a solution to problem I for two players, G must be either
K32, K, 2 less one edge, or K, U K. In any case the result holds. Assuming
the result for 2,3, --- ,n— 1 players look at a graph G for = players for which
a Vi matching accomplishes a fair division. For a subset S C Vi of players let
R(S) = {Hj € V; : Hj is adjacent to some F; € S}. If there exists a non-empty
proper subset S for which |S| = |R(S)| then any Vi matching must assign players
in S to holdings in R(S). In this case the result follows by letting players inS
choose in the order guaranteed on the smaller problem by the induction hypothesis
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followed by the players in V; — S choosing on holdings V5 — R(S) in the order
guaranteed by the induction hypothesis.

On the other hand if |R(S)| > |S| forall @ # S C V4, let any player, say P;,
choose his largest holding, say H;. Then the bipartite subgraph (V; —{P1}, V2 —
{H1}) = G satifies |R(S)| > |S| forall S C Vi — P; so by Hall’s Theorem
a Vi — {P} matching exists in G'. Applying the induction hypothesis to G’
completes the proof. 1

Suppose that by this process of choosing, members of S receive holdings R'(.S)
C R(S). Then the solution is stable in the sense that for any S, not every player
in S would prefer a different holding in R'(S) to the one received. We finally
note further that standard optimization techniques provide matchings maximizing
satisfaction in the sense that } 7 p;( H;) is maximal.

Finally note the relation that Theorem 5 gives between conditions I and ITI. Any
solution for I gives a partition X = S; US, U---US, so that forall i, s;(S;) > L,
and p;(S;) > pi(S;) for j > i. Condition III requires that for all 4, u;(S;) >
pi(S;) forall j.
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