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Abstract. The fact that any n-vertex 4-connected maximal planar graph admiits at least
-34’5*1 4-contractible edges readily follows from the general results of W.D. McCuaig
[91,[101,(11] and of L.Andersen, H.Fleischner, and B.Jackson [1].

Here we prove a lower bound of [%’3] on the number of 4-contractible edges in
every 4-connected maximal planar graph with at least eight vertices.

Throughout the discussion here, G will stand for a 4-connected maximal pla-
nar graph with at least 8 vertices. The graph obtained by contracting an edge e in
G is denoted by G - e, and if G - e is 4-connected, then we say e is 4-contractible
(note that an edge is 4-contractible if and only if it does not lie on a separating
4-cycle). Let 4(G) denote the number of 4-contractible edges in G. For any
vertex v in G, let I(v) denote the set of 4-contractible edges incident with v,
and let W(v) denote the set of 4-contractible edges in the wheel surrounding v
(clearly I(v) C W(w)). Let X; = {v| |I(v)] = 4},4 > 0. We say that G is of
insufficient contractibility if, for every 4-contractible edge e in G, it holds that
(G - e) > 4(G). Clearly, it suffices to prove the result for insuffciently con-
tractible graphs G and for graphs G with exactly 8 vertices.

Lemma 1. For every degree-4 vertex v in G, it holds that |I(v)| € {2,4}, and
when |I(v)| = 2, the 4-contractible edges incident with v touch two non-adjacent
vertices of the separating 4-cycle surrounding v.

Proof: Let (z1,z2,73,%4) be the 4-cycle connected to v. Suppose there is at
least one non-contractible edge incident with v, say, (z1,v). If there were the
separating 4-cycle (z;,v, T3, z), then (z1, T2, z) would be a separating triangle,
and so the separating 4-cycle passing though (z1, v) must pass through (v, z3) as
well. Similarly, if either (5, v) or (z4,v) is 4-contractible, then both of them are
4-contractible. Assume for the sake of contradiction that there are separating 4-
cycles (z1,v, 73, 2) as well as (z4,v, T2, 2'); Then it must be that 2’ = z, which
further implies that G has only 6 vertices. |
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Lemma 2. If v(G - €) > 4(G) for a 4-contractible edge e in G, then e is
incident with a degree-4 vertex.

Proof: If7(G-e) > 4(G) for a 4-contractible edge e in G, then there is an edge
which is contractible in G - e but was not contractible in G. That edge must then
lie on a separating 4-cycle in G whose interior (or exterior) contains no vertices
when e is contracted. This can only happen if e is incident with the 4-cycle as well
as with a single degree-4 vertex in its interior. 1

Lemma 3. If G is insufficiently contractible, then there does not exist a path
P = (v, w, y) in G where each vertex on P is of degree 4.

Proof: Suppose there exists such a path P, and its vertices are connected to z;

and z3 as in Figure 1 (z; and z3 cannot be neighbours in the 4-cycle surrounding

w, as this would imply that G has only 6 vertices). Let u and z be the other vertices

connected to v and to y respectively. Clearly, u cannot be 2, (v, w) and (w, y) are

4-contractible, and 7(G - (v,w)) = (G - (w,y)) =7(G) — 1,2 contradiction.
1

Lemma 4. Let G be insufficiently contractible. Let =, be a vertex that is con-
nected by a non-contractible edge to a degree-4 vertex v in G. Then there is a
triangle (z1,v,v') where v,v' are of degree 4, and the path P = (s',v,v',s") in
the wheel surrounding x, is made of three 4-contractible edges.

Proof: Let (z1,u,z3,w) be the 4-cycle surrounding v, and (z1,v,73,2) be a
separating 4-cycle passing through (z1,v)(z ¢ {u,w}). By Lemma 1, edges
(u,v) and (v, w) are 4-contractible as shown in Figure 2. Assume for the sake of
contradiction that neither u nor w is of degree 4; Then there is at least one vertex in
the strict interior of (z1,w, z3, z) and one in the strict exterior of (z1, v, T3, 2);
Consider contracting the edge (w,v) in G into a vertex w'; Since G is insuffi-
ciently contractible, then as in the proof of Lemma 2, at least one of the four edges
(z1,1), (v,73), (z3,w'), (w', 1) must be 4-contractible in G - (v, w), which
they are not. The rest follows from Lemma 1. 1

Theorem 1. Let G be insufficiently contractible. Then for every véztex 1 inG,
it holds that

@ |I(z)|>2,0r

® |I(z1)|=1and [W(z1) — I(z1)| >3, 0r

© |I(z1)|=0 and |W(z1)| > 6.

Proof: The claim trivially holds if there are at least two 4-contractible edges inci-
dent with z, (as in the case of a vertex of degree 4 by Lemma 1). Soassume that z;
is of degree at least 5, and z; € Xo U X1. Then there exists at least one separating
4-cycle W (z;) (¥ for short) passing through z;. Of all separating 4-cycles hav-
ing their interior contained in the interior of ‘¥, pick acycle C = (z1,T2,T3,Z4)
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such that no other separating 4-cycle passing through z; has its interior contained
in the interior of C.

Case (i): The number of vertices inside C is more than 1:

Let (z1, z2,y) be the face incident with the edge (z1,x2) inside C as in Figure
3. By the minimal interior assumption, there cannot be a separating 4-cycle that
passes through (z;,y) and does not contain a vertex from the exterior of C. If
it were the case that there exists a path (z1,y, 73), then the same assumption on
C would be violated. Therefore, if there were a separating 4-cycle C' that passes
through (z;, y) and contains a vertex strictly from the exterior of C, it must pass
through either z, or z4 and thus must induce a separating triangle. The edge
(z1,y) is therefore 4-contractible.

Case (ii): There is exactly one vertex v inside C:

If (z;,v) is not 4-contractible, then by Lemma 4, there is a triangle (z;,v,v’)
where v, v' are both of degree 4 and neither is in the strict exterior of C, and
there is a path P = (s',v,v',8") in the wheel surrounding z; made of the three
4-contractible edges.

To complete the proof of the theorem, reembed the graph G such that the
outside of ¥ becomes its inside, and argue as before on the inside of '¥'. We then
find that

(a) there are at least two 4-contractible edges incident with z;, or

(b) there is one 4-contractible edge incident with z;, and at least three
more 4-contractible edges in the wheel surrounding z;, or

(c) no 4-contractible edges are incident with z;, but there are at least
six 4-contractible edges in the wheel around z; (note that the two
paths, each with 3 edges, gotten from arguing on the inside and the
outside of ¥ have to be edge disjoint by Lemma 3).

Observe that if follows from Theorem 1 that, if v is a vertex in an insuffi-
ciently contractible graph G such that |I(v)| = 0, then degree (v) > 6. Mc-
Cuaig, in his thesis [11], has proven a dual version of Theorem 1 for all cycles
in any cyclically 4-connected cubic graph without the assumption of insufficient
contractibility.

Corollary 1. If an insufficiently contractible graph G has no vertices of degree
4, then it has at least |V (G)| 4-contractible edges.

Proof: In the proof of Theorem 1, case (ii) applies only when v is of degree 4.
Since @ has no degree-4 vertices, it holds that |I(v)| > 2 for every vertex v. 1

Theorem 2. Let G be insufficiently contractible. Then G admits at least [3n/4
4-contractible edges.
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Proof: Letp = {v| |I(v)] > 2}. Counting the 4-contractible edges by their
incidence, we have that

2.9(Q) > Y i 1Xil > |Xa| + 2p.
2

Since a 4-contractible edge (u, v) which is in two triangles (u, v, ) and (u, v, y)
can appear in at most 4 wheels (viz., those of u, v,z and y), Theorem 1 implies
that

49(G) > 6]Xo| + 4|X1|+ Y i+ |Xi| > 6]Xo| + 4|X:| + 2p.
i>2

Then,
7(G) > min max{[(|X1] + 2p)/27,[(6(n— |X1| — p) + 4|X:1| + 2p)/4]},

where the minimum is taken over all possible values of | X1 |+ 2 p. This is [3n/4]
when | X;|+2p=3n/2. 1

Corollary 2. Every n-vertex 4-connected maximal planar graph with at least
eight vertices admits at least [3n/4 4-contractible edges.

Proof: There is exactly one 4-connected maximal planar graph with seven ver-
tices, and it has precisely five 4-contractible edges (there are no 4-connected max-
imal planar graphs with six or less vertices with 4-contractible edges using the def-
inition of connectivity from [2]). Therefore a graph GG with eight vertices which is
not insufficiently contractible has at least six 4-contractible edges, from the defin-
tion of insufficient contractiblity; For an insufficiently contractible graph G with
eight vertices, the lower bound follows from Theorem 2. Induction using Theorem
2 then completes the proof for graphs with more than eight vertices. |
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