REGULI IN TRANSLATION PLANES DEFINED BY
FLOCKS OF HYPERBOLIC QUADRICS

N. L. Johnson

Department of Mathematics
The University of Iowa
Iowa City, IA 52242

1. Introduction

In Gevaert and Johnson [2] a correspondence was given between flocks of
quadratic cones in PG(3, ¢) and translation planes of order ¢? andkemnel D K &
GF(q) that admit an affine elation group E such that some component orbit union
the axis of E is aregulus in PG(3, K). Furthermore, Gavaert, Johnson and Thas
[3] show that in the associated translation plane w there are ¢ reguli that share a
component and if 7 is not Desarguesian then any regulus in m is one of these ¢
reguli. A corollary to this result is that the collineation group of m must permute
the basic set of reguli.

In Johnson [4], a correspondence was obtained between flocks of hyperbolic
quadratics in PG(3,q) and translation planes of order ¢ and kernel D K =
GF(q) thatadmitan affine homology H such thatsome component orbit union the
axis and coaxis (recall the coaxis is the component whose extension contains the
center for the homology group) of H is a regulus in PG(3, K). Such translation
planes, in turn, are equivalent to spreads that are covered by g + 1 reguli that
mutually share two lines.

In this article, we consider if a translation plane of order ¢ and kernel D K &
GF(q) whose spread is covered by g+ 1 reguli that mutually share two lines (com-
ponents) could admit reguli not among the basic set. Since the regular nearfield
planes are André planes and correspond to flocks of hyperbolic quadrics, it fol-
lows that the regular nearfield planes admit a set of ¢ — 1 disjoint reguli (disjoint
on lines) as well as a set of ¢ + 1 reguli that mutually share two components.
Our main result is that the Desarguesian and regular nearfield planes are exactly
the translation planes with “extra” reguli that correspond to flocks of hyperbolic
quadrics.

2. Extra Reguli

We first recall some results which are required in this section.
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(2.1) Theorem. (sce Gevaert, Johnson, and Thas[3] for (i) and Johnson[4] for
(ii)).
Let Ry, Ry, be any two distinct reguli in PG(3,q). If
(i) R; and R, sharc a line, or
(ii) R1 and R, share two lines then there exists a unique Desarguesian spread
containing Ry and R, .

(2.2) Theorem. (See, e.g. Liincburg [6] for (i)).

Let R be aregulus in PG(3,q) and ¥ any Desarguesian spread (affine trans-
lation plane) containing R. Let G denote the collineation group of R which fixes
the opposite regulus of R linewise. (i) Then G is also a collineation group of X.

(ii) Any group H of affine central collineations with axis (coaxis) in R and
leaving R invariant is a collineation group of X.

Proof: (ii) Consider R as a translation net. H clearly leaves any Baer subplane of
R (incident with the axis of H) invariant. These Baer subplanes are the lines of
the opposite regulus when considered projectively.

(2.3) Theorem. (Johnson [4], and Thas[5])

There is a correspondence between flocks of hyperbolic quadratics in PG(3, q)
and translation planes of order ¢* and kemnel D K = GF(q) whose spreads are
covered by asetS of g+ 1 reguli mutually sharing two components C, M . Further-
more, the translation plane admits an affine homology group H with axis L and
coaxis M which fixes each regulus R of S and acts regularly on the components
of R —{L,M}.

(2.4) Theorem. (Zeischang [7]).

Let F= {C;;i=1,...,9+1} beaflock of hyperbolic quadraticinPG(3,q) ,q
odd, and let w; D C; denote the planes containing theconics fori = 1,2 ..., ¢+1.
Let T C {m;;i=1,...,q+ 1} be a subsct of planes that intersect in a line of
PG(3,q).If|T| > 9;—‘ then the flock F is either linear (all planes intersect in a
line) or the flock of Thas[5].

By (2.3) (see Johnson[4]), (2.4) has the

(2.5) Corollary.

Let  be a translation plane of odd q* and kernel D K = GF(q) and have its
spread covered by a set {R1,...,Rq+1} 0f g + 1 reguli that mutually share two
lines (components). If a subsetT of {Ry,..., Rq+1} Of at least %‘— reguli may be
embedded in a Desargucsian spread, then = is either Desarguesian of the regular
nearfield plane.

We may now give our main result:

206



(2.6) Theorem.

Let w be a translation of order ¢* and kernel D K = GF(q) whose spread is
covered by a set {R1, ..., Rqr1} 0f g+ 1 reguli that mutually shere two compo-
nents L, M. If there is a regulusR C w andR & {R1, ..., Rq+1} thenw is either
Desarguesian or the regular nearfield plane.

Proof:
Thas[5] has shown that any hyperbolic flock of even order corresponds to a
Desarguesian plane. Hence, we may assume that g is odd.
IfR#R;fori=1,...,g+ 1 then R can share < 2 components with any R;.

+1
Since R C fUl R;, it is not possible that £ and M can both be components of R.
1=

Hence there are at least ¢ components of R — {£, M} N'R which li¢ in the UR;
and no three can be in any one R ;. Hence, R shares components # L or M with
at least %l +1= %‘- reguli (recall g is odd). Let Sy, ..., Sg+1/2 denote reguli in
{R1,..., Rg+1} that share at least one component different from £, M with R.

By (2.1), there exists a unique Desarguesian affine plane ¥ containing R and S .
Furtermore, £ admits as a collineation group any collineation group of S; which
fixes the opposite regulus of S; linewise. By (2.3), 7 admits a homology group H
with axis £ and coaxis M that fixes each R; and acts regularly on the components
of R; —{L,M}fori=1,...,¢+ 1. By (2.2)(ii), H is also a collineation group
ofZ.

Let £; be a common component of R and S; # L or M fori = 1,2,..., %5
Then C;H = S; — {L,M}sothat L;H C (RUSI))H C XH = ¥ . That is,
S;CXfori=1,2,..., 9’;—' By (2.5), m is either Desarguesian or the regular
nearfield plane which proves (2.6).

(2.7) Corollary.

Letw be a translation plane of ¢* and kemmelD K = GF(q) whose spread is
covered by a set {Ri, ..., Rq+1} 0fq+ 1 reguli that mutually share two compo-
nentsC, M. Ifw is not Desarguesian or a regular nearfield plane, then

(1) The full collineation groupG permutes the reguliR;,i=1,...,q9+ 1.

(2) Either there is a normal subgroup H ofG of orderq — 1 consisting of ho-
mologies with axisC and coaxisM or there is a collineation which inter-
changesL forM.

Proof: {£, M} and {R;|i = 1,...,q+ 1} is invariant by (2.6). if £ and M are
invariant then H is normal since H9 = gHg~! is a homology group with axis £
and coaxis M such that the orbits of H?¢ are reguli. So the orbits of H¢ are the
orbits of H, which implies H9 = H.
Definition

Let F;, F» be flocks of a hyperbolic quadratic H in PG(3,¢). F1 is said tobe
isomorphic to F; if and only if there is an element g € PT L(4,q) which fixes
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H and maps the conics of F; onto the conics of . If Fy = F,, g is said tobe a
collineation of F;.

2.9 Theorem.

Let F be a flock of a hyperbolic quadraticH inPG(3,q) and letGx denote the
full collineation group of F. Letw denote the associated translation plane and as-
sumer is neither Desarguesian nor a regular nearfield plane. LetG, denote the
full collineation group of n. LetK denote the kernel= GF(q) ofw and letK*
denote the kernel homology group of orderg — 1. Let H denote the affine homol-

+1
ogy group of orderq — 1 with axisC and coaxisM where the spread form = qu Ri
1=

whereR; are the reguli sharingC and M fori=1,...,q+ 1. ThenGr is isomor-
phic toGn/K*H.

Proof: By the construction of F from =, using the Klein quadric (see Johnson
[41), the conics of G are the (¢ + 1) 2 Baer subplanes incident with the zero vector
of the the g + 1 reguli R;,i = 1,2,...,¢ + 1. Clearly, the group ' L(4,¢) in 7
induces a corresponding group in the space PG(5,q) which leaves invariant the
Klein quadric. The associated group is I’ O, (6,q) sothatT' L(4,q)/{I,—I} ¥
I O,(6,q). Let the subgroup of = which fixes each Baer subplane of R; be de-
noted by B. Clearly, B D K*H as each Baer subplane is a K-space since R; is a
regulus (also see (2.2)). Since G, permutes the reguli R; by (2.7), B4 Gx.

Note that G, /{I,—I}/B/{I,—I} = Gx/B, so that G, induces a collineation
group on F isomorphic to G,/B. The collineation subgroup of R; which fixes
each Baer subplane of R incident with O and fixes a component £ has order
|g(q — 1)? by Foulser [1]. Hence, |B£||(q —1)? since M is fixed by Bc. Hence
ifB=Bcthen B= K*H.

Suppose there exists an element g € 13 such that £ <% M. Then g% € B¢ so
that |g?||(g — 1)2,|B| = 2(g — 1)*. Let V be a component of R; — {£, M} so
that By = (g) - K*. ‘

Embed R, UR; ina Desarguesian plane X so that by (2.2), Bis also a collineation
group of £. By fixes all 1-dimensional K-spaces on N since R, is a regulus.
Let P be any affine point on N’ — {O}. Then |Byp| = 2 as K* is regular
on the nonzero vectors of the 1-space containing P. Let (1) = By p so that
B = (r)H K*. Thus 7 interchanges the components £ and M.

Choose R; in Z to be represented in the formz = 0,y = r -, € K &
GF(q) where {L,M} = {(z = 0),(y = 0)} so that coordinatizing £ by F &
GF(¢?),F D K, has the form (in £) (z,y) — (y°b,z°c) where b,c €
F,0 € AutF.

Since 72 = 1, then o = 1 and ¢°b = 1. Also 7 leaves {(ac, af)|a fixed in F,
for all @, 8 € K} invariant as these subspaces represent Baer subplanes of R;.
Then (aa,aB) — ((aB)°b, (a)?c) = (a°bB,a’ca) since o% = 1. Hence
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a°b = a6 for some § € K. Thatis, a®"'b € K of all a € F which implies that
o=1,b€ K and similarly thatc € K.

So 7 has the form (z,y) — (yb,zb~!) in T and fixes y = zb~! pointwise.
So 7 is an affine homology of both £ and = since y = zb~! is a component of
Ri:. However, 7 leaves each Baer subplane incident with O of each regulus in
{Ri,i=1,2,...,q+ 1} which covers . By Liineburg [6](4.7), y = zb~! must
be a component of each Baer subplane of each regulus R, which cannot be the
case. This proves (2.9).

(2.10) Theorem.

(1) Letw;,wy be translation planes of ¢? and kernel GF(q) which are neither
Desarguesian nor regular nearfield planes, each of whose spreads are covered g+ 1
reguli sharing two components. Let Fr;,1 = 1,2 denote the associated flocks of
a hyperbolic quadric in PG(3,q). Thenm, is isomorphic tow if and only if Fy,
is isomorphic to F, .

(2) Let Fy, F» be flocks of a hyperbolic quadric in PG(3,q) which are nei-
ther linear nor the flock of Thas. Let wx,,1 = 1,2 denote the translation planes
constructed from F,i = 1,2. Then F, is isomorphic to F, if and only if ng, is
isomorphic (o g, .

Proof: Since there is but one fundamental set of reguli for each plane, a flock
isomorphism induces (is induced from) a plane isomorphism by (2.8),(2.9).

Added in Proof

L. Bader and G. Lunardon have recently announced that using recent results of
Thas they have determined all flocks of hyperbolic quadrics. Besides the linear
flock and flock of Thas corresponding to the Desarguesian and regular nearfield
planes, there are exactly three other flocks which correspond to the irregular nearfield
planes of orders 112,232 592,
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