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Abstract. Let v, k and n be positive integers. An incomplete perfect Mendelsohn
design, denoted by k-IMPD(v, ), is a triple (X,Y, B) where S is a v-set (of points),
Y is an n-subset of X, and B is a collection of cyclically ordered k-subsets of X (called
blocks) such that every ordered pair (a,b) € (X x X) \ (Y x'Y) appears t-apart in
exactly one block of B and no ordered pair (a,b) € Y x Y appears in any block of B
for any ¢, where 1 <t < k — 1. In this paper some basic necessary conditions for the
existence of a k-IMPD( v, n) are easily obtained, namely, (v—n)(v—(k—1)n—1) =0
(mod k) and v > (k — 1)n+ 1. It is shown that these basic necessary conditions
are also sufficient for the case k = 3, with the one exception of v = 6 and n = 1.
Some problems relating to embeddings of perfect Mendelsohn designs and associated
quasigroups are mentioned.

1. Introduction

A set of k distinct elements {a;,a1,--- ,ax} is said to be cyclically ordered by
a; < a3 < -+ < g < a; and the pair a;, a4, are said to be t-apart in a cyclic
k-tuple (a1,a2,--- ,a;) where i + t is taken modulo k.

Let v and k be positive integers. A (v, k, 1)-Mendelsohn design (briefly
(v, k,1)-MD) is a pair (X, B) where X is a v set (of points) and B is a collection
of cyclically ordered k-subsets of X (called blocks) such that every ordered pair
of points of X are consecutive in exactly one block of B. If forallt = 1,2, ---,
k—1, every ordered pair of points of X are t-apart in exactly one block of B, then
the (v, k, 1)-MD is called perfect and is denoted by (v, k, 1)-PMD.

We wish to remark that the concept of a perfect cyclic design was introduced
by N. S. Mendelsohn [15], and this concept was further developed and studied in
subsequent papers by various authors (see, for example, [2]-[7], [10], [11], [16]).
We have adapted the terminology and notation of Hsu and Keedwell [10], where
the designs have been called Mendelsohn designs. In graph theroretic terms, a
(v, k, 1)-PMD is equivalent to the decomposition of the complete directed graph
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K on v vertices into k-circuits such that forany r,1 <r < k-1, and for any
two distinct vertices z and y, there is exactly one circuit along which the (directed)
distance from z to y is r. It is easy to see that the number of blocks ina (v, k, 1)-
PMD is v(v — 1) /k and hence an abvious necessary condition for its existence is
v(v—1) =0 (mod k). This condition is not always sufficient. For example, it is
known [13] thatno (6,3, 1)-PMD exists. Note that a (v,3, 1)-MD is necessarily
perfect by definition, and this design is now more commonly called a M endelsohn
triple system (briefly MTS), due to Mathon and Rosa [12].

Let v, k and n be positive integers. An incomplete perfect Mendelsohn de-
sign, denoted by k-IPMD(v,n), is a triple (X,Y,B) where X is a v-set (of
points), Y is an n-subset of X ,and B is a collection of cyclically ordered k-subsets
of X (called blocks) such that every ordered pair (a,b) € (X x X) \(Y xY)
appears t-apart in exactly one block of B and no ordered pair (a,b) €Y x Y ap-
pears in any block of B forany ¢, where 1 < ¢t < k— 1. For all practical purposes,
the k-IPMD(v, n) can be viewed as a (v, k, 1)-PMD with a hole of size n based
on the set Y. In this paper some basic necessary conditions for the existence of
a k-IPMD(v, n) are easily obtained, namely, (v — n)(v — (k — I)n— D=0
(mod k) and v = (k — 1)n+ 1. Itis shown that these basic necessary conditions
are also sufficient for the case k = 3, with the one exceptionof v = 6 andn = 1.
We also mention some problems relating to embeddings of Mendelsohn designs
and their associated quasigroups.

2. Preliminaries

In what follows, we obtain some basic necessary conditions for the existence of
a k-IPMD(v, n).

Suppose there exists a k-IPMD(v,n) (X,Y,B),whereY = {y1,v2,...,Yn}
X = {y1,%2,--+,Yn, T1,%2,..., T} and m = vn. By the definition of a k-
IPMD( v, n), no block in B can contain two or more points from Y. Now let us
consider those ordered pairs of points which appear 1-apart in blocks of B. For
any giveny € Y and any z € X \ Y, there exists one block of the form (z,y, ...)
and therefore, there are exactly m blocks in B containing y. Consequently, there
are mnblocks in B intersecting Y and these blocks contain altogether mn( k — 2)
ordered pairs with two points both in X \ Y. However, there are m(m — 1) or-
dered pairs in X \ Y and the remaining m(m — 1) — mn(k — 2) ordered pairs
must appear in some blocks, each of which contains k ordered pairs. Thus the
total number of blocks in B is (m(m — 1) — mn(k — 2))/k + mn. It follows
that m(m — 1) — mn(k — 2) must be divisible by k, and we readily obtain the
following necessary conditions:

Theorem 2.1. A necessary condition for the exisence of a k-IPMD(v,n) is

(v—-m(v—(k—1)n=0 (mod k), andv > (k—1)n+ 1.

212



For the special case k = 3, which is fully investigated in this paper, we
observe the following:

Corollary 2.2. A necessary condition for the existence of a 3-PMD(v,mn) is
(v=m)(v—2n—-1)=0 (mod 3), and v >2n+ 1.

Before proceeding, we wish to point out that our study of IPMDs is very
much related to the problem of embeddings of PMDs. An (n, k, 1)-PMD(X,B)
is said to be embedded in a (v, k, 1)-PMD(X*, B*) provided that X C X*and
B C B*. Itis a trivial matter to see that by unplugging a subdesign of order n from
a(v, k, 1)-PMD, wereadily obtain a k-TPMD( v, n). On the other hand, if we have
ak-IPMD(v,n) (X,Y,B) and thereexistsan (n, k, 1)-PMD(Y, B'), then we can
easily fill in the hole of the IPMD to geta (v, k, 1)-PMD( X, B UB'). Evidently,
the problem of constructing IPMDs is more general than that of embeddings of
PMDs. It is worth mentioning that Hoffman and Lindner [9] have completely
solved the embedding problem for Mendelsohn triple systems. Thus, in particular,
we have the following result from [9, Theorem 2.7]:

Lemma 2.3. Let v and n be positive integers and v > 2n+ 1. If v,n = 0
or1 (mod 3), then there exists a 3-IPMD(v,n) except for the case of (v,n) =
(6,1).

Lemma 2.3 in conjunction with Corollary 2.2 essentially reduces our investi-
gation of the problem of existence of a 3-IPMD( v, n) to the case where v —n= 2
(mod 3),v > 2n+ 1, for which we shall use the notion of a resolvable Mendel-
sohn design.

Definition 2.4. Ifthe blocksofa (v, k,1)-MD forwhichv =0 (mod k) can be

partitioned into v — 1 sets each containing v/ k blocks which are pairwise disjoint
(as sets), we say that the (v, k, 1) -MD is resolvable and each set of v/k pairwise
disjoint blocks will be called a parallel class of the resolution.

We shall make use of the following result due to Bermond, Germa and Sot-
teau [8].

Lemma 2.5. If v = 0 (mod 3) and v ¥ 6, then there exists a resolvable
(v,3,1)-PMD.

Instead of listing all the blocks of a design, it suffices to give the group G
acting on a set of base blocks. We shall adapt the following notation:

devB = {B+g|B €B] and g € G},

where B is the collection of base blocks of the design.
For completeness, we need the following lemmas.
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Lemma 2.6. There exists a 3-IPMD(8,2).
Proof: LetG = Zs. Y = {001,002} and X = Zg UY. Let B be the following
base blocks:

B = {(011;3))(001)0s4)1(002)0)5)}~

Then it is readily checked that (X,Y, devB) is a 3-IPMD(8,2).
Lemma 2.7. For every positive integer n, there exists a 3-IPMD(2n+ 1, 7).

Proof: Let G = Zpy. Y = {001,002,...,00,} and X = Zpy UY. Let B be
the following base blocks:

B = {(<”t)0)‘l'.)|‘l € Aﬂ"'l \{0}}
Then it is readily verified that (X, Y, devB) isa 3-IPMD(2n+ 1, n).

3. Existence of 3-IPMD(v, n)

In this section, we establish that the necessary condition for the existence of
a 3-IPMD(v, n) given in Corollary 2.2 is also sufficient, with the exception of
(v,m) = (6,1). To complete our investigation, we need

Lemma 3.1. Suppose v and nare positive integersand v > 2n+1. If v—mn =0
(mod 3) and v — n+ 6, then there exists a 3-IPMD(v,n).

Proof: Since v —n=0 (mod 3) and v — n ¥ 6, then there exists a resolvable
(v —n,3,1)-PMD (X,B) from Lemma 2.5. In this resolvable PMD, there are
v —n— 1 parallel classes of blocks. Letv = n=3t. For1 < j < 3t —1,letP
denote the j-th parallel class consisting of the blocks:

1:)' = {(Iljyyljyzlj):(ij;ij)ZZj))' ")(xtj: ytj,ztj)}'

LetY = {oo1,002,...,00,}. We shall adjoin the “infinite” point co; to P; and
reform the blocks as follows. From each block ( zi;, yij, z3), 1 < ¢ < T, we ob-
tain the collection of three blocks {(z;,-, Yij, OOj), (yij, zij, OOj) s (z,-j, Tij, 00,)}
Denote by P} the collection of 3t blocks resulting from the adjoining of oo; to
P;. We now define

B‘=(U P;)u( U P,-).
1<j<n n<j<v-n—-1

Then it is fairly straightforward to verify that (X UY,Y,B*) isa 3-IPMD(v,n).
Note that any ordered pair ( z, 00;) for z € X appears in exactly one block of P}
because of the resolvability of (X,B) and the same applies to the ordered pair
(00, ). On the other hand, P has the same pairs of type (z,y) € X x X as
originally found in P;. This completes the proof of the lemma.

We are now in a position to prove
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Theorem 3.2. The necessary condition for the existence of a 3-IPMD(v,n),
namely

(v—=m(v-2n—1)=0 (mod 3) andv >2n+1,

is also sufficient, except for the case (v,n) = (6,1).

Proof: As already mentioned, the case (v,n) = (6, 1) is impossible. Ifv,n= 0
orl (mod 3) andv > 2n+ 1, the result follows from Lemma 2.3. f y = n=2
(mod 3),v >2n+ 1, v — n# 6, then the result follows from Lemma 3.1. If
v=n=2 (mod 3),v >2n+1andv—n=6,then(v,n) € {(8,2),(11,5)}
and the result follows from Lemmas 2.6 and 2.7. It is readily checked that all the
possible cases have been covered and the proof of the theorem is complete.

4. Concluding Remarks

1. It is fairly well-known [13] that a Mendelsohn triple system can be associated

with a variety of quasigroups satisfying the identities 2 = z (idempotent) and
z(yz) = y (semisymmetric). Quasigroups satisfying the identity z(yz) = y are
called semisymmetric and are known to exist for all orders. Moreover, semisym-
symmetric quasigroups are not necessarily indempotent and, in fact, may have no
idempotents at all (see, for example, [1]). Evidently, Theorem 3.2 provides an
effective tool for the embedding of semisymmetric quasigroups of all orders satis-
fying the necessary conditions. Equivalently, the theorem provides a construction
of incomplete idempotent semisymmetric Latin squares with a hole, that is, miss-
ing a subsquare.
2. While the problem of existence of k-IPMD(v, n) is completely settled for the
case k = 3, there is much work left to be done for the other values of k > 4, which
are currently under investigation. In particular, the nonexistence of a (4,4,1)-PMD
has already made the case k = 4 much more challenging than that for k = 3.
We also wish to remark that there is an almost complete solution to the problem
of existence of a (v,4,1)-PMD (see [7]). This problem was originally studied
by Mendelsohn [14], who associated with the designs a variety of quasigroups
satisfying the identities z2 = z and (z(yz))y = z. Since the identity (z(yz))y =
z is conjugate equivalent to the identity (yx)(zy) = z, called Stein’s third law, it
is evident that an investigation of 4-IPMD(v,n) will provide for embeddings of
an interesting variety of quasigroups.
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