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Abstract. In [1], [2], there are many assignment models. This paper gives a new
assignment model and an algorithm for solving this problem.

In a certain company, n workers A1, ..., A, are available for m jobs By, ..., Bm,
the effectiveness of the workers in these various jobs may be distinct; we wish to
take an assignment that maximises the total effectiveness of the workers. The
problem of finding such an assignment is known as the optimal assignment prob-
lem. This problem is equivalent to that of finding a maximum-weight matching
in a weighted complete bipartite graph; we shall refer to such a matching as an
optimal matching. We suppose that m = n.

It is clear that if the effectiveness of every worker in these various jobs is greater
than 0, then the optimal matching must be a perfect matching. Otherwise the
optimal matching is not necessarily a perfect matching; that is, it is possible that
there exists an assignment that maximises the total effectiveness without needing
nworkers. In this case, one is interested in an assignment that maximises the total
effectiveness and minimizes the number of workers. This problem is equivalent
to finding a maximum-weight matching M such that | M| is as small as possible.
We shall refer to such a matching as a minimum cardinality optimal matching. In
the following, we prove several Theorems, and then present a good algorithm for
finding a minimum cardinality optimal matching in a weighted complete bipartite
graph.

LetG = (X,Y, W) be a weighted complete bipartite graph. As in [1,p.86], a
feasible vertex labelling is a real-valued function [ on the vertex set X UY such
thatforallz € X andy €Y

I(z) + (y) > w(zy). )
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The real number I(v) is called the label of the vertex v. No matter what the edge
weights are, there always exists a feasible vertex labelling.

Let E; = {zy|i(z) + I(y) = w(zy) }, where L is feasible vertex labelling. The
spanning subgraph of G with edge set Ej is denoted by Gg.

Theorem 1. Let! be a feasible vertex labelling of G. If Gy conlains a perfect

matching M, then

(a) M is an optimal matching of G;

(b) Any optimal matching M* of G is contained in Gy.
Proof: According to Theorem 5.5 in [1] we only need to prove (b). Let M* be
any optimal matching and M any perfect matching of G,. It follows from (a) that

w(M*) = w(M) @

If M* is not contained in Gg, let M* = Ey U E,, where Ey C E\E,, E; C E;
and E; is nonempty. It follows from [1] that

w(M*) =) w(e) = S w(e) + S wie) < El(v) A3)

eEM"* ecEy eEE; veV

Since M is a perfect matching of G,

w(M) = Ew(e) = El(v). @

eEM vev

By (3) and (4), we have w(M*) < w(M). This contradicts (2), hence M* is
contained in Gg. #

Let M be an optimal matching of G and P = z1y; ... Txys an M-alternating
path; if z;y1, Tryx € M and

S owe= ), wle),

e€E(P)\M eeE(P)NM

then such a path P is known as an M-adjusting path. Clearly, M' = MA E(P)
is also an optimal matching of G and |[M '| = |M| — 1, where AA B denotes the
symmetric difference of A and B.

Theorem 2. Let M be an optimal matching of G. Then M is a minimum cardi-
nality optimal matching of G if and only if G contains no M-adjusting path.

proof: Let M be an optimal matching in G, and suppose that G contains an M- .
adjusting path P. By the definition, we may obtain another optimal matching M '
and |M'| = |M| — 1. Thus M is not a minimum cardinality optimal matching in
G.
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Conversely, suppose that M is not a minimum cardinality optimal matching in
G. Let M’ be a minimum cardinality optimal matching; then

IM'| < |M]. )
Let H = G[MA M']. Each vertex of H has degree either one or two in H. Thus

each component of H is either an even cycle or a path with edges alternately in
M’ and M. For each component H; of H,

Yo w@= ), we) - ©

e€E(H1)NM e€E(H))NM'

since both M and M’ are the optimal matching. By (5), the number of edges
of M, which H contains, is greater than that of M, and there exists some path
component P of H which starts and ends edges of M. By (6) and the definition
of M-adjusting path, the path is an M-adjusting path in G. #

Theorem 1 provides the basis of a good algorithm for finding a minimum car-
dinality optimal matching in a bipartite weighted graph. If a feasible vertex la-
belling ! is found such that G contains a perfect matching M, then by theorem
1, this matching is optimal and any optimal matching in G is contained in Gg. By
theorem 2, we start with an arbitrary perfect matching M of Gy. If G contains
no M-adjusting path, then M is. If not, we choose an M-adjusting path P in G,.
M = MA E(P) is another optimal matching which satisfies |[Xf| < |M]. So it
remains to determine whether G contains an M-adjusting path, and to find one if
one exists.

THEOREM 3. If G, contains an M-adjusting path, then there exists an edge
with weight 0 belongs to Gg.

Proof: Let P = x,y, ...,y be an M-adjusting path of Gy; then

S owe= Y, we) N

eeMNE(P) eEE(P)\M
According to the definition of Gy,

k-1 k-1
(1) + Wye) = Uz) + Uue) + Y (Uo1s) + 1)) = Y (U zinr) + W)

i=1 i=1

k [
=Y w(zw) — Y w(yizin),

i=1 i=1
from (7) we have I(z1) + I(yx) = 0. Also from (1) and w > 0, it follows that

0 <w(zy) <Uz1)+Uye) =0

Thus, z1yx € Eg and w(z1ye) = 0. #
Let P = x4, ...y be an M-alternating path, and z; y, Tryx € M, then P
is called an (z,, yx)-path.
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Theorem 4. Let 1, yx be M-saturated, T, yx € Eg and w(z1yx) = 0, then

(a) G, contains an M-adjusting path if and only if Gg — {z1y1, Tkyk} contains
an M-augmenting path from y, [0 xy;

(®) If G, contains no M-adjusting (z,y)-path then x,y, ¢ E(P) for any
M-adjusting path P of Gg.

Proof: (a) Necessity is clear. Now we prove the sufficiency as follows.

Let P, = y1 7242 ...k be an M-augmenting path in G¢ — {z1y1, Zkyk }. Thus
P=P U{zl v, zkyk} isa (1‘1 , y,,)-path in Gg. Since zy Yk € E and w(zlyk) =0
we have that I(z;) + I(yx) = 0. With a proof similar to that of Theorem 3, it is
easily obtained that P is an M-adjusting path.

() If G contains an M-adjusting path P starting at z(# z:) and ending at
y(# vk), and 71y € E(P), by the proof of Theorem 3, w(zy) = 0. Note that
z1yx € M, and we have an M-adjusting (z1, y&)-path from (yi,y)-pathin P to
to (z, z1)-path in P. This is a contradiction.

By Theorem 3 and 4, we may get an algorithm for finding an M-adjusting path.
By this algorithm, either G, contains no M-adjusting path, or an M-adjusting path
in Gy is obtained.

Algorithm 1

Step 0: Let Go = G¢[V(M)], that is, Go, is a subgraph of G, induced by the
ends of edges in M.

Step 1: If Go contains no edge with weight 0. by Theorem 3, Gy contains no
M-adjusting path and hence, by Theorem 2, M is minimum, in this case, stop.
Otherwise, let z1yx € E(Go) and w(z1ys) = 0, g0 to step 2.

Step 2: Lete; = z1y1 € M and e = zxyx € M, by the Hungarian method
(1,p. 82], we find an M-augmenting path from y; to z¢ in Go — {e1,ex}. If
Go — {e1, e;} contains no such path, then replace Go by Go — {z1y:} and go to
step 1. Otherwise let P be an M-augmenting path, then P, = P U {e1,ex} is an
M-adjusting path.

Stop.

We see that Algorithm 1 is a good algorithm.
By Algorithm 1, it is not difficult to give an algorithm for finding a minimum
cardinality optimal matching.

Algorithm 2

Step 1: By the Kuhn-Munkres algorithm [1,p. 87] we find a feasible vertex
labelling such that G, contains perfect matching. Let M be any optimal matching
in Gy, go to step 2.

220



Step 2: By Algorithm 1, we find an M-adjusting path P, in Gg. If it exists,
then replace M by MA E(P;) and go to step 1. Otherwise, M is a minimum
cardinality optimal matching, stop.

It is easy to see that Algorithm 2 is a good algorithm too.
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