Domination Number of Products of Graphs

M. El-Zahar and C. M. Pareek Mathematics Department, Kuwait University P.O. Box 5969, Safat, Kuwait

Abstract. Let G=(X,E) be any graph. Then $D\subset X$ is called a dominating set of G if for every vertex $x\in X-D$, x is adjacent to at least one vertex of D. The domination number, $\gamma(G)$, is min $\{|D||D\}$ is a dominating set of G. In 1965 Vizing gave the following conjecture: For any two graphs G and G

$$\gamma(G \times H) \ge \gamma(G) \cdot \gamma(H)$$
.

In this paper, it is proved that $\gamma(G \times H) \geq \gamma(G) \cdot \gamma(H)$ if H is either one of the following graphs: (a) $H = G^-$ i.e., complementary graph of G, (b) $H = C_m$, i.e., a cycle of length m or (c) $\gamma(H) \leq 2$.

1. Introduction.

All graphs considered in this paper are assumed finite, simple, undirected and without loops.

If G is a graph, then V(G) will denote the vertex set of G and E(G) will denote the edge set of G. A subset D of V(G) is called a dominating set of G if for each x in V(G)-D there is y in D such that xy is in E(G). The domination number, $\gamma(G)=\min\{|D||D \text{ is a dominating set of }G\}$, where |D| denotes the number of elements of D. Finally, for graphs G and H, the product, $G\times H$, is the graph with vertex set

$$V(G \times H) = V(G) \times V(H) = \{(x,y) | x \in V(G), y \in V(H)\}$$

and edge set

$$E(G \times H) = \{(x_1, y_1)(x_2, y_2) | \text{ either } x_1 x_2 \in E(G) \text{ and } y_1 = y_2$$

or $x_1 = x_2 \text{ and } y_1 y_2 \in E(H) \}$

In [3], Vizing conjectured: For graphs G and H, $\gamma(G \times H) \geq \gamma(G) \cdot \gamma(H)$.

In [1] and [2] Jacobson and Kinch have shown that the Vizing's conjecture is true for the product of the paths, and if one of the graphs is a tree.

In this paper, we show that the conjecture holds if G is any graph and H is either G^- , C_m (cycle of length m) or $\gamma(H) \leq 2$. Our results improve some of the results of [1] and [2].

Before, proving the main results we give some auxiliary results and state a few observations.

Theorem 1. If $\gamma(G) = k$ then there is a partition of V(G) into k classes, say, $V(G) = V_1 \cup V_2 \cup \cdots \cup V_k$ such that each V_i is a dominating set for G^- .

Proof: Let $D = \{v_1, v_2, \dots, v_k\}$ be a dominating set of G. For $A \subset V(G)$ define

$$m(A) = |\{\{y_1, y_2\}|y_1, y_2 \in A, y_1 \neq y_2 \text{ and } y_1y_2 \notin E(G)\}|$$

Now, consider a partition $V(G) = V_1 \cup V_2 \cup \cdots \cup V_k$ satisfying:

- (a) $v_i \in V_i$;
- (b) If $y \in V_i$, $y \neq v_i$ then $yv_i \in E(G)$;
- (c) $\sum_{i=1}^{k} m(V_i)$ is minimum.

We claim that each V_i is a dominating set of G^- . For, if V_i is not a dominating set of G^- there is a $y \notin V_i$ such that $yx \notin E(G^-)$ for each x in V_i . That is $yx \in E(G)$ for each x in V_i . Suppose $y \in V_j$ for $i \neq j$. But, then there is z in V_j such that $zy \notin E(G)$. If this is not true then $D' = (D - \{v_i, v_j\}) \cup \{y\}$ would be a dominating set of G of cardinality less than k, a contradiction. Hence, there is z in V_j such that $zy \notin E(G)$.

Now, define a new partition $V_1' \cup V_2' \cup \cdots \cup V_k'$ where

$$V'_t = V_t \ t \neq i, j \text{ and } V'_i = V_i \cup \{y\} \text{ and } V'_j = V_j \setminus \{y\}.$$

Evidently, this partition satisfies (a) and (b) and $\sum_{i=1}^k m(V_i') < \sum_{i=1}^k m(V_i)$. This contradicts (c). This completes the proof of the theorem.

Corollary 2. (Jaeger and Payan [4]). If G is any graph, then $\gamma(G) \cdot \gamma(G^-) \leq |V(G)|$.

Theorem 3. For graphs G and H and D any dominating set of $G \times H$ either $(\{x\} \times V(H)) \cap D \neq \phi$ for each $x \in V(G)$ or $(V(G) \times \{y\}) \cap D \neq \phi$ for each $y \in V(H)$.

The proof follows from the fact that if $(x, y) \notin D$ then either there is a member of D in $\{x\} \times V(H)$ or in $V(G) \times \{y\}$ otherwise D would not be a dominating of $G \times H$.

Corollary 4. For any two graphs G and $H, \gamma(G \times H) \ge \min(|V(G)|, |V(H)|)$.

As a consequence of Corollaries 2 and 4 we have the following:

Theorem 5. If G is any graph, then $|V(G)| = \gamma(G \times G^-) \ge \gamma(G) \cdot \gamma(G^-)$.

The proof follows by theorem 3 and the observation that for any graph $G, D = \{(x, x) | x \in V(G)\}$ is a dominating set of $G \times G^-$.

Corollary 6. If G and H are graphs such that $\gamma(G) = \gamma(H) = 1$, then $\gamma(G \times H) = \min(|V(G)|, |V(H)|)$.

The proof follows by Corollary 3 and the fact that if $\{x_0\}$ is a dominating set of G then $D = \{(x_0, y) | y \in V(H)\}$ dominates $G \times H$.

Theorem 7. If G is any graph and H is a graph such that $\gamma(H) = 2$, then $\gamma(G \times H) \ge 2\gamma(G)$.

Proof: Assume $\gamma(G) = k$. For any $y \in V(H)$, let $G_y = V(G) \times \{y\}$ and for $x \in V(G)$, let $H_x = \{x\} \times V(H)$. Let A be any dominating set for $G \times H$. We show that |A| > 2k.

By Theorem 1, there is a partition $V(H) = V_1 \cup V_2$ such that V_i (i = 1, 2) is a dominating set of H^- . Now, define

$$B_0 = \{x \in V(G) | H_x \cap A = \phi\},\$$

$$B_1 = \{x \in V(G) | |H_x \cap A| = 1\},\$$

$$B_2 = \{x \in V(G) | |H_x \cap A| \ge 2\}.$$

Clearly, $B_0 \cup B_1 \cup B_2 = V(G)$ is a partition. Let $B_1' = \{x \in B_1 | H_x \cap A = \{(x,y)\}$ with $y \in V_1\}$ and $B_1'' = \{x \in B_1 | H_x \cap A = \{(x,y)\}$ with $y \in V_2\}$. We now show that $B_2 \cup B_1'$ and $B_2 \cup B_1''$ are dominating sets of G.

Let $x_0 \in V(G) - (B_2 \cup B_1')$. Assume first $x_0 \in B_0$. Choose any y in V_1 . Observe that H_{x_0} contains no vertex from A. Therefore, A contains a vertex (x',y) for some x' such that $x_0x' \in E(G)$ and $x' \in B_2 \cup B_1'$. But if $x_0 \notin B_0$ then $A \cap H_{x_0} = \{(x_0,y)\}$ where $y \in V_2$. Since V_1 is a dominating set of for H^- there is a vertex $y_1 \in V_1$ such that $yy_1 \in E(H^-)$ i.e., $yy_1 \notin E(H)$. Now (x_0,y_1) has to be dominated by some vertex (x',y_1) . Clearly, $x'x_0 \in E(G)$ and $x' \in B_2 \cup B_1'$. This completes the proof that $B_2 \cup B_1'$ is a dominating set of G. Similarly, one can prove that $B_2 \cup B_1''$ is a dominating set of G.

Now, we have the following:

$$|B_2 \cup B_1'| \ge k$$
 and $|B_2 \cup B_1''| \ge k$,

that is, $|B_2| + |B_1'| \ge k$ and $|B_2| + |B_1''| \ge k$. Therefore, $|A| \ge |B_1| + 2|B_2| = |B_1'| + |B_2'| + 2|B_2| \ge 2k$. Hence,

$$\gamma(G \times H) \ge 2k = 2\gamma(G).$$

In the next theorem, it is proved that the Vizing's conjecture is true if one of the graphs is a cycle.

Let C_m denote a cycle of length $m \geq 3$, i.e., $V(C_m) = \{v_1, v_2, \ldots, v_m\}$ and $v_i v_{i+1} \in E(C_m)$ for $i = 1, 2, \ldots, m$ (subscripts are interpreted modulo m). Note that $\gamma(C_m) = \lceil \frac{m}{3} \rceil$.

Theorem 8. For any graph H,

$$\gamma(C_m \times H) \geq \gamma(C_m) \cdot \gamma(H).$$

This theorem is proved by induction on m.

Proof: For m=3, $\gamma(C_m)=1$ and the result follows trivially. For $4 \leq m \leq 6$, $\gamma(C_m)=2$ and by Theorem 7 the formula holds. Suppose $m\geq 7$ and H is a graph with $\gamma(H)=k$. Suppose $A\subset V(C_m)\times V(H)$ is a dominating set for $C_m\times H$. For $i=1,2,\ldots,m$ define $A_i=\{y\in V(H)|(v_i,y)\in A\}$. Put $D=A_m\cup A_{m-1}\cup (A_{m-2}\cap A_1)$. D is a dominating set of H. For if $y\in V(H)$ and y is not adjacent to any vertex in $A_m\cup A_{m-1}$, then the vertex (v_m,y) can only be dominated by (v_1,y) and (v_{m-1},y) can only be dominated by (v_{m-2},y) . Therefore, $y\in A_1\cap A_{m-2}$. Hence D is a dominating set of H. Now, it follows that $|D|\geq k$, that is,

$$|A_m| + |A_{m-1}| - |A_m \cap A_{m-1}| + |A_1 \cap A_{m-2}| \ge k. \tag{1}$$

Now, consider a new graph K obtained from $C_m \times H$ by deleting the vertices $(v_m \times h)$ and (v_{m-1}, h) for each $h \in V(H)$ and identifying vertices (v_1, h) and (v_{m-2}, h) for each $h \in V(H)$. It is evident that $K \cong C_{m-3} \times H$.

Choose $A' \subseteq V(K)$ as follows:

$$A' = \{(v_i, y) | 2 \le i \le m - 3 \text{ and } (v_i, y) \in A\}$$

$$\cup \{(v_1, y) | (v_1, y) \in A \text{ or } (v_{m-2}, y) \in A\}$$

$$\cup \{(v_1, y) | (v_m, y) \in A \text{ and } (v_{m-1}, y) \in A\}.$$

We claim that A' is a dominating set of K. Let $(v_i, y) \in K - A'$. If $i \neq 1$, it is easy to see that (v_i, y) is adjacent to some vertex of A'. Suppose i = 1. Recall that (v_1, y) corresponds to two vertices of $C_m \times H$, namely (v_1, y) and (v_{m-2}, y) . Suppose (v_1, y) is not dominated in K by a vertex from $A' \cap (\{v_1\} \times V(H))$. Therefore, (v_1, y) is not dominated in $C_m \times H$ by a vertex in $A_1 = A \cap (\{v_1\} \times V(H))$ in which case at least one of (v_2, y) or (v_m, y) must be in A. Similarly, (v_{m-2}, y) is not dominated in K by a vertex from $A \cap (\{v_{m-2}\} \times V(H))$ in which case at least one of (v_{m-3}, y) or (v_{m-1}, y) must be in A. Both, (v_m, y) and (v_{m-1}, y) cannot belong to A for otherwise $(v_1, y) \in A'$ which is a contradiction. Therefore, $(v_2, y) \in A$ or $(v_{m-3}, y) \in A$, hence either, $(v_2, y) \in A'$ or $(v_{m-3}, y) \in A'$. But, (v_1, y) is adjacent in K to each of (v_2, y) and (v_{m-3}, y) . Hence A' dominates K. Now, by the induction hypothesis, $|A'| \geq \lceil \frac{m-3}{3} \rceil k$. That is,

$$\sum_{i=2}^{m-3} |A_i| + |A_1| + |A_{m-2}| - |A_1 \cap A_{m-2}| + |A_m \cap A_{m-1}| \ge \left\lceil \frac{m-3}{3} \right\rceil k.$$
 (2)

Combining (1) and (2) we get

$$|A| \geq \left\lceil \frac{m}{3} \right\rceil k.$$

This completes the proof of the theorem.

References

- 1. M. S. Jacobson, L. F. Kinch, On the domination number of products of graphs I, Ars Combinatoria 18 (1983), 33–44.
- 2. M. S. Jacobson, L. F. Kinch, On the domination of the products of graphs II, Trees, Journal of Graph Theory 10 (1986), 97–106.
- 3. V. G. Vizing, The Cartesian product of graphs, Vyč. Sis. 9 (1963), 30-43.
- 4. F. Jaeger and C. Payan, Relation du type Nordhaus-Gaddum pour le Nombre d'absorption d'un graphe simple, C. R. Acad. Sc. Paris, Series A, t. 274 (1972), 728-730.