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Abstract. The notion of fusion in association schemes is developed and then applied
to group schemes. It is shown that the association schemes derived in [1] and [4] are
special cases of A-fused schemes of group schemes X (G), where G is abelian and A
is a group of automorphisms of G. It is then shown that these latter schemes give rise
to PBIB designs under constructions identical to those found in [1] and [4].

1. Introduction

Let X be a finite nonempty setand Ry, R1, - - - , R4 nonempty subsets of X x X
which satisfy
(@ Ro={(z,xr):z€X}
(i) XxX=RURU---UR4s, RiNR;j=0ifi#;
(iii) Foralli,*R; = R; forsome j, where!R; = {(z,y) : (y,z) € R}
(iv) For all 4,5, k, the cardinality pf; of the set {z € X : (z,2) €
R;,(2,y) € R;}is constant whenever (z,y) € Ry.

Such a configuration X = (X, {R;}) is called an association scheme of class
d. The subsets R; are termed relations and the pfj intersection numbers for the
scheme. As p{‘j depends only on the relation Ry, and not on the particular choice of
(z,y), we say pfj is representative-independent . An association scheme is com-
mutative if its intersection numbers satisfy p{.‘j = pf,- and symmetric if its relations
satisfy *R; = R;. A symmetric association scheme is necessarily commutative.
In this paper we develop techniques for generating certain association schemes,

called fusion schemes, from a fixed scheme. The notion of fusion scheme is quite
general, but we shall be mainly interested in the fusion schemes of group schemes
(section 3), in part as they are a source for constructing partially balanced in-
complete block (PBIB) designs. Constructions of such designs from association
schemes appear in [1], and are later extended in [4] to a larger class of schemes
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(see section 4 and the closing remark of section 3). In section 4, we show the class
of schemes to which these constructions apply is quite substantial.

For general terminology on association schemes and designs, the reader is
referred to Bannai and Ito [2] and Raghavarao [5], respectively.

2. Fusion schemes and automorphisms

LetX = (X,{R;}) and W = (W, {S;}) be association schemes. For 6 : X —
W a bijection, define B¢ = {(z%,4°) : (z,v) € Ri},1 > 0. Wecallfa
fusion mapping from X onto W if, for each i, R? C S; for some j. We call W
a fusion scheme of X if there is a fusion mapping from X onto W. If, in the
above, we replace R? C S; by R? = S;, then @ is called a scheme isomorphism .
A scheme automorphism of X is defined to be a scheme isomorphism of X onto
itself. Observe that a scheme automorphism induces a permutation of the relations
of the scheme. We call the automorphism trivial if Rf = R; for all 1. Clearly, the
set of all automorphisms of X forms a group under composition, which we denote
by AutX.

The reader will observe that, in essence, a fusion scheme W of X is obtained
by “fusing” or combining relations from X in some admissible fashion. Clearly,
one does not obtain a fusion scheme of X by arbitrarily fusing relations. It is
necessary, for example, that Rp be fused with no other relation, and that ! R; be
fused with *R; whenever R; and R; are fused. Still, adhering to these rules in no
way guarantees that the resulting object will be an association scheme. What is
needed is a more precise recipe for fusing relations.

Given an association scheme X = (X, { R;}) of class d and a group A of au-
tomorphisms of X , it is useful to consider the equivalence relation on {0,1,---,d}
defined by

i ~ j if and only if R! = R; for some § € A.

We denote by [1] the equivalence class containing i, and we define
Ry = U R;.
Jjeli)

The following result suggests a relationship between scheme automorphisms
and fusion.

Theorem 2.1. Let X = (X, {R;}) and A be as above. Then W = (X,{R(a})
is a fusion scheme of X whose intersection numbers 'P[[,f;][ 7 satisfy

e _ k

Pii= D Pk
re(s]
selj]
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where p¥, are the intersection numbers of X . Moreover, if X is commutative
(resp. , symmetric), then W is commutative (resp. , symmetric).
Proof: Clearly {Ry; } partitions the set X x X, and R[o] is the diagonal relation
as R} = R for all § € A. Itis trivial to verify that *Rf;; = Ry;, where j is
determined by 'R; = R;. In particular if X is symmetric then ‘R, = R; for all 1,
whence W is symmetric as well. We complete the proof by showing the ‘P[ i1y are
representative-independent and satisfy the formula given in the theorem statement.
Let (z1,%1), (72,y2) € Rpy- We first consider the case where (z1,y1),
(z32, y2) both lie in R;. Here we have

{z € X : (z1,2) € Ra,(2,11) € Rnl|
=) Hz€X :(z:,2) €R.,(2,1m) € R}

re[s]
s€lj]

= )" Hz€ X :(22,2) € Rr,(2,1) € R}

re(i]
s€[Jj]

= |{z € X : (32,2) € Rpa,(2,92) € R}

since the p,,, are representative-independent. Assume now (the general case) that
(z1,91) € Ry and (z3,y2) € R, for somet € [k]. Then (a:z,yz) € Ry for
some @ € A. Using our result from above, we have

[{z € X : (z1,2) € Riq1,(2,%1) € R}l

= |{z € X : (£3,2) € Rpa1,(2,43) € Rij}|
={zeX: (zg,zo) € R[,-],(zo,yg) € Rii1 )
=|{z € X : (z2,2) € Rq,(2,y2) € Rijj}

where the last equality follows from the fact that Ry;) and Ry;) are invariant under
the action of A. Thus the ’P[[,'j][ ;) are representative-independent and satisfy

[k]
P = E Ps-
re(d]
s€lj]
From this we easily conclude that W is commutative whenever X is, and the proof
is complete.
Remark: We refer to the fused scheme W of Theorem 2.1 as the A-fused scheme
of X, and we write W = X4.
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3. Fusion in group schemes

In the previous section we saw how scheme automorphisms could be used to
generate examples of fusion schemes. Nonetheless, we have yet to establish any
satisfactory source for these automorphisms. In the case of group schemes this is
remedied below, where we establish a link between automorphisms of X (G) and
those of G.

For any finite group G one obtains an association scheme X (G), called the
group scheme of G, as follows. The underlying set is G and the relations {R;}
are defined by

Ri={(z,9) :yz~' €Ci}

where Cy, Ch, - - - , Cq are the conjugate classes of G taken in some fixed order.
(We do insist that Cp be the singleton class consisting of the identity element of
the group.) It is well known that X (G) is commutative, and it is symmetric if and
only if all elements of G are real (i. e., conjugate to their respective inverses).

Theorem 3.1. Any automorphism of a group induces an automorphism of its
group scheme. Moreover, inner automorphisms of the group induce trivial scheme
automorphisms.

Proof: Let X (G) be a group scheme and ¢ an automorphism of G. Clearly ¢ is
a bijection on G, so we need only show that, for each i, Rf = R; for some j. But
this follows immediately as group automorphisms permute the conjugate classes
of the underlying group. If ¢ is inner, then ¢ fixes each conjugate class setwise,
so induces a trivial automorphism of X (G).

As the following general example illustrates, it is possible to obtain an au-
tomorphism of X (@) from a bijection ¢ on G which is not itself a group auto-
morphism. Indeed let g and h be distinct elements of G and let A, and pj,-1 be the
maps (z) = gz and (z)» = zh~! (z € G) respectively. Clearly the com-
position of these maps gives a bijection ¢ on G which is not an automorphism, as
¢ moves the identity element. Still, ¢ induces an automorphism (in fact a trivial
automorphism) of X (G) , as can be seen by the following simple argument:

(z*,y*) € Ri < (gzh~!,gyh™") € Ri 4 gyh~'(gzh™) ! € G
sgyz gt €Cieyr €Cie (3,9) ERi.

If G is a finite group and A is a group of automorphisms of G, we can form
a new group G:A, called the external semidirect product of G by A [6]. There is
an interesting relationship between the group scheme X (G:A) and the A-fused
scheme X (GQ)4 of X(G). Before this can be made precise, we need one more
definition.
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LetY = (Y,{S;}) be an association scheme of class d. We define a sub-
scheme of Y to be any association scheme X = (X, {T;}) of class e < d which
satisfies

(i) XCYand
(ii) the S; can be rearranged so thatT; = S;N(X x X),0 <i<e.

Theorem 3.2. Let G and A be as above. Then the A-fused scheme X (G)a of
X (G) is a subscheme of X (G:A).

Proof: Let X(G) = (G,{R;}) and X(G:4) = (G:A,{S;}) be the group
schemes for G and G:A, respectively. Clearly, as G is normal in G:A, every
G A-conjugate class which meets G is a union of G-classes. Order the noniden-
tity G-conjugate classes Ct, - - ,Ce, - - - , Ct and the nonidentity G A-conjugate
classes Ky,--- ,Ke,--- ,Kq so that Ky,--- , K is the totality of G:A-classes
which meet G and C; C K; fori=1,---,e. We claim, under this ordering, that
To, - - , T. are precisely the relations for X (G)a, where T; = S:N(G xG). The
result will then follow as (G, {T;}) is clearly a subscheme of X (G:A).

For0 < i < e,let(z,y) € T; whencez,y € Gandyz~' € K;. AsC; C K;
there exists @ € A suchthat6—!(yz~1)@ € C;. Butin the group G: A, conjugation
of g € G by 8 € A is defined by 6~ g0 = ¢°. Thus (yz~')? € Ci. Asz,y €G,
we have (yz~1)® = y®(z?) ! whence (z°,1%) € Ri,i.e. (z,y) € Ryy. This
proves T; C Ryi), 0 < i < e. Conversely, let (z,y) € Ry, 0 <i<e. Then
(z%,4°) € Riforsomed € A, whence (yz~')° € C; C K. Butthen yz~! € K;
as K; is A-invariant. Thus (z,y) € T; and we have Rj;; = T3,0 < i < e. As
ToU---UT. = G x G, it follows that the A-fused scheme of X (@) has the form
(G{R}) relative to our initial ordering of conjugate classes. The result follows.

Before we proceed to the construction of PBIB designs, let us discuss the
schemes obtained in [1] by Agrawal and Nair and in [4] by Hultquist, Mullen and
Niederreiter.

Essentially, the schemes of Agrawal and Nair are derived as follows. Start
with the ring Z,, of complete residue classes modulo n. Lettingto = 1 <t <
ty < --- < t, be all divisors of n other than =, partition Z,, into sets Ao, Ay, -0,
Age1, where Ag = {0} and Az1 = {a : (a,n) = £;},0 < 1 < s. (Here (a,n)
denotes the greatest common divisor of a and n.) The relations T; are now defined
by

Ti={(z,9) :z—y€A}, 0<iLs+1L

Clearly, A, is the multiplicative group of units in Z,, and, as shown in [1], the
sets Ag, A1, - - -, Ags1 are precisely the A; -orbits of Z, under the action of mul-
tiplication.

The schemes derived by Hultquist, Mullen and Niederreiter are similar. They
replace Z, by a quotient ring of the form F,[z]/(V'), where F,[z] is the poly-
nomial ring in one indeterminate over the field F, of ¢ elements, and (V') is the
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ideal generated by a fixed nonconstant polynomial V' € Fy[z]. If one views the
ring Z,, as the quotient Z /(n), the connection becomes even more apparent: Z
is replaced by F,[ ], and n by V. The ¢; are now taken to be the monic divisors
of V, and the A; and T; are unchanged. As before, A; is the group of units of
F,[z]1/{V) and A¢, A1,--- ,As+1 are the orbits of F;[z]/(V) under the action
of A;.

Each of the aforementioned derivations of schemes is a special case of a sin-
gle derivation applied to an arbitrary finite ring R with unity. Define the equiva-
lence relation

z ~ y if and only if z = yu for some unit u € R.

Denote the equivalence classes by A; (1 > 0) with ordering chosen so that Ay =
{0} and 1 € A;. Clearly A = A, is the multiplicative group of units of R.
Letting G denote the additive group of R, it is immediate that A acts as automor-
phisms on G via right multiplication: z — zu,z € G,u € A. (Indeed, this is
just the distributive law in R.) Moreover, the A; are precisely the A-orbits of G
under this action. With T} as above, we conclude from Theorems 2.1 and 3.1 that
X (G, {T;}) is an association scheme, viz. the A-fused scheme of X (G). When
R = Z,, we obtain the schemes in [1]; when R = F,[z]/(V), we get those in
[4]. We observe that the notation of greatest common divisor is incidental to the
derivation of these schemes.

In the next section, we show the design constructions in [1] and [4] can be
extended to the family of schemes {X (G)4} where G is arbitrary abelian and
A is any group of automorphisms of G. (One extra condition on A is required
in one of these constructions. See Theorem 4 .2.) In particular, fusion schemes
arising from arbitrary rings with unity are members of this family. Interestingly,
the schemes of [1] and [4] occur at opposite ends of the spectrum. In [1], G is
cyclic and A is the full automorphism group of G; in [4], G is elementary abelian
and A is a very small subgroup of AutG. Our generalization fills a sizeable middle
ground.

4. Construction of PBIB designs

Let X = (X,{S;}) be an association scheme of class d > 2 with v = |X|.
Suppose the members of X can be arranged in b subsets of X, called blocks, so
that

(i) Each block contains k distinct elements of X,
(ii) Eachelement of X is contained in r blocks,
(iii) Given any (z,y) € S;,0 < j < d, the number ); of blocks in
which z and y occur together is independent of (z, y).
Such a configuration is called a PBIB design based on X. The numbers v, r, b, k
and )\; (0 < j < d) are called parameters of the design.
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Remark: If d = 1, the above configuration is called a balanced mcomplete block
(BIB) design based on X .

We are interested in the case where X is the A-fused scheme of a group
scheme X (G), G abelian. For our first construction, we follow the one given in
3.2 of [1]. Here we let B be a fixed conjugate class K; of G: A which meets (so
lies entirely within) G. Thus B = {g° : 6 € A} where {g} is the ith conjugate
class of G, and (z,y) € Ry if and only if yz~! € B. One now defines the
blocksby z+ B = {z+ y : y € B}, z € G. The following result gives sufficient
conditions for such a system of blocks to yield a PBIB design.

Theorem 4.1. Let G be an abelian group and A any group of automorphisms of
G which does not fuse all nonidentity elements of G. Then the system of blocks
defined above yields a PBIB deszgn based on X (G)4 with parameters v = b =

|G|, = k=|B|, and \; 'P[,,][.] where Ry = *Ry;).

Proof: By definition each block contains k = |B| elements of G. Also, for any
t € G, t occurs in precisely r = |B| blocks, viz.t — y + B,y € B. Now fix
(a,b) € Ryj). Thena, be .'z:+B & a—1z,b—1 € B4 (a,2) € Ry,
(z,b) € Ryy. Thus ); ’P[,,]m, and ); depends only on j. It now follows that
the system {z + B : z € G} yields a design based on X (G)4, which is a PBIB
design if and only if X (G)a is of class at least two, i. e.if and only if A fails to
fuse all nonidentity elements of G. As we clearly have v = b = |G|, the proof is
complete.

The second method of constructing PBIB designs is based on a procedure
of Das and Kulshreshtha [3]. Here we assume G is abelian and A contains the
automorphism 7 : £ — —z. Let Bo be any nonempty subset of G, and let
{61,0,,--- ,6:} be a complete set of representatives for the cosets of {7) in A.
Letting B; = BY, our set of blocks is now defined tobe B = {z + B; : 7 €
G,1 < i < t}. (Although it is possible that = + B; and y + By are identical as
sets, we regard them as distinct blocks unless z = y and j = k.) We now assert

Theorem 4.2. With notation as above, the set of blocks B yields a PBIB design
with parameters v = |G|, b = vt, k = |Bo|, v = kt, and X; = tB;/Pl5);; where
B; = |Ryj1 N (Bo x Bo)|.

Proof: Clearly v = |G|, k = |Bo| and b = vt. Alsor = kt,aseachg € G is
contained in only those blocks of the form g — y + B; (y € B;, 1 < 1 < t). For
(a,b) in the jth relation Ry;; of X (G)a, let Bi(e,b) = {z+ B;: e, b€z + B;}
and D;(a,b) = {(a, B) € B; x B; : B—a = b—a}. Because of the difference set
construction of B, |B;(a,b)| = [Di(a,b)|. Fix4,j and (a,b),(c,d) € R;). Then
there exists & € A such that (b — a)? = d — c. Let () be the coset containing
6;6.
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Case one: 6,0 = 6;. As B! = B,, we have (a, 8) € D;(a,b) « (o, 8% €
Dy(c, d), whence |B;(a,b)| = |Bi(c,d)|.

Case two: 0;0 = 0, 7. Here (a, B) € Di(a,b) < (B, o) € Di(c,d), so again
|Bi(a,b)| = [Bi(c,d)|.

We now have

1B(a,b)| = ) |Bi(a, )| = Y IBi(c, d)| = |Bc, D),
i k

which proves \; depends only on ;. To compute );, we count the set {(a,b, B) :
(a,b) € Rij;,B € B,a,b € B} in two ways. First we note that |(B x B) N
Ryj)| = B; for all B € B, as Ry; is invariant under the action of A and that of
translation by elements of G. Also X (G), is symmetric (since 7 € A), so that
Pl = {b: (a,b) € Ry;3}| foralla € G. We thereby obtain

0
VPGl = vib;
and the theorem follows.
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