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1. Introduction

Let X be a finite v-set of objects called treatments and B a family of non-null
subsets (called blocks) of X' . For each subset S of X, let \(S) denote the number
of blocks containing S. Then the system (X', B) is called a t-wise balanced design
d, if for any t-subset S of X, \(S) is a constant, )¢, say. Moreover, if for any z-
subset S of X, for given = < t, \(S) = )., then the design d is said to be regular
t-wise balanced. Note that a 2-wise balanced design with the equal block size is
a balanced incomplete block design.

Several combinatorial properties for t-wise balanced designs can be found in
Mullin (1974) and Kramer (1983) with definitions of other terms used here. Here
a new property on the inner structure of t-wise balanced designs is provided.

2. Statement

It is known (see Kramer (1983)) that a t-wise balanced design is not necessarily
(t—1)-wise balanced. Kramer also gave an example of a 13 —(24, {14,15},11)
design which is t-wise balanced for t = 1, 2, 3, 4, 5, 13, but not-balanced for
6 <t<12.

Below is a property on inner structure of t-wise balanced designs.

Proposition 1. If d = d; U dy is a t-wise and (t — 1) -wise balanced design
with subdesigns d; having block size k;, (i = 1, 2; ki # k), then each d; is a
(t — 1) -design.

Proof: Without loss of generality, let k; > k; . For the usual treatment-block inci-
dence matrices ((n{?’)) and ((mi;)) of designs d; and d, respectively, it follows
that for any distinct 1y,...,%:1
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where j € d denotes the running over blocks belonging to the design d, and v is
the number of treatments in d, which implies that dy is a (t — 1) — (v, k2, A\{2))
design, and hence d; isa (t — 1) — (v, k1, hem1 — A'2)) design.

When ¢ = 3 in Proposition 1, we have the following.

Corollary 1. In a regular 3-wise balanced design with two distinct block sizes,
each of subdesigns with all blocks of the equal block size is a 2-design.

The technique used in the proof of Proposition 1 can not be applied to designs
with more than two distinct block sizes for the similar purpose. But we can say
a little. Based on Proposition 1, in a t-wise and (¢t — 1)-wise balanced design
d = d; U dy U ds with three distinct block sizes, if one of d; for some 1 is a t-
design, it follows that other two subdesigns are (t — 1)-designs. Even so this is
not powerful.

Though a complement of a t-wise balanced design is not necessarily ¢-wise
balanced, as also pointed out in Mullin (1974), a combination of a regular 2-wise
balanced design and its complement yields a regular 3-wise balanced design. This
observation may reveal a kind of a converse to Corollary 1 when the original de-
sign has more than two distinct block sizes.

Recently, the fact described in Corollary 1 is used to characterize statistical
block designs with supplemented balance (see Kageyama and Majumdar (1989)).
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