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Abstract. Let B, = K(1,1,n) denote the n-book. In this paper we (i) calculate
r(Cs, By) for all n, (ii) prove that if m is an odd integer > 7 and n > 4m — 13 then
r(Cm, Bs) = 2n+ 3, and (iii) prove that if m > 2n+ 2 then r(Cp, Bp) =2m — 1.

1. Introduction.

The complete tripartite graph B, = K(1,1,n) is called the n-book . Interest
in Ramsey numbers involving books grew out of the discovery of a link between
book Ramsey numbers and the theory of strongly regular graphs [6]. In [7] the
following formula is established for book-path Ramsey numbers:

(B, P,) = max {(Ic+2)(n— 1)+1,2 [m_ l] +m} ,

k+1
n—1
k= [m—l]'

Book-star Ramsey numbers were studied in [7], and additional results concerning
these Ramsey numbers are contained in a paper of Chartrand et al. [2]. There are
several interesting unsolved problems concerning book-star Ramsey numbers and
so there are certain to be additional papers on this subject. Indeed, Ramsey number
problems involving books have provided serveral fruitful studies. The whimsical
title given to reference [4] is an expression of this fact. Cycle-book Ramsey num-
bers are no exception to this rule. In this paper we (i) calculate r(Cs, B,,) for all
n, (ii) prove that if m is an odd integer exceeding S and if n > 4m — 13 then
1(Cym, Bn) = 2m — 1. Some results concerning r(Cs , B,) were given in [4], but
we know practically nothing about r(Cp,, B,) when m is even and greater than
4. Also, the problem of computing 7(Cp,, B,) when m is odd and m and = are
nearly equal provides an unanswered test of strength.

2. Terminology and Notation.

For the most part, our use of graph theoretic terminology and notation will con-
form with that used in [1]. However, there are certain special conventions which
we shall follow in treating the problem at hand, and these are now described.
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Let V = {v1,v2,...,vp} denote a set of vertices. Then [V1? denotes the set
of all un-ordered pairs of these vertices. By a two-coloring we mean a partition
[V]? = (R, B). Equivalently, we ascribe to each edge of the complete graph of
order p a color, either red or blue. This two-coloring defines two edge-induced
graphs of order p and we use (R) and (B) as symbols for these graphs. For each
nonempty set of vertices X C V, there are vertex-induced subgraphs of (R) and
(B), and these are denoted (X ) 5 and (X) p respectively. Let F and G be graphs
without isolated vertices. The Ramsey number r(F,G) is the smallest value of
|V| such that in every possible two-coloring (R, B) of [V] 2, either (R) contains
(a subgraph isomorphic to) F' or {B) contains G. We are here concerned with the
Ramsey number (Cy,, By). In this regard, it is well to remind the reader that,
in accordance with [1], the scheme C : 31, 3,..., Tnm, Z; is used to denote a cy-
cle of order m. (A path of order m is denoted P : z1,Z2,...,Zm.) AlSO,itis
convenient to introduce a special symbol, namely A (uv), to represent for a given
uv € [V]? the set of all vertices w which are commonly adjacent to v and v in
(B). Thus, the occurrence of B, as a subgraph of (B) means that [A (uv)| > n
for some uv € B.

3. Canonical Colorings.

Let |V| = 2(p — 1) and consider the two-coloring (R, B) of (V1?2 in which
(R) ~ 2 K,_;. In this two-coloring, (R) contains no connected graph of order p
and (B) contains no odd cycle. This is an example of a canonical coloring. By
letting p = m, we find that

T(Cm,Bn) 2> 2m—1.
By letting p = n+ 2 and reversing the roles of R and B, we find that
7(Cpm, Bs) > 2n+3

whenever m is odd . In what follows, we shall establish certain cases in which the
above statements hold with equality.

4. Odd Cycles.
Our first theorem gives 7(Cr,, By) completely form =3 andm = 5.
Theorem 1.
r(03,3n>={6 =1,
2n+3 ifn>1.

9 ifn=1,2,
r(Cs,Ba) = { 10 ifn=3,

2n+3 ifn>3.
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Proof: The calculation of r(Cs, B;) is given in [6]. The statement of the result
is included here for the sake of completeness.

With one exception, the colorings needed to establish +( Cs, B,,) are the canon-
ical ones discussed in the last section. The exception occurs in the case of n= 3.
The fact thatv(Cs, Bs) > 10 comes from the two-coloring in which ( R) contains
no Cs and (B) contains no Bj;.

Itis very easy to prove that r(Cs, B;) = r(Cs, B;) = 9 and these two Ramsey
numbers are already recorded in [2]. We shall describe a general scheme which
may be used to prove that r(Cs, B3) < 10 and r(Cs, B,) < 2n+ 3 forn> 3.
It will be clear to the reader that straightforward arguments based on

Figure 1.
Critical Coloring for v(Cs, B3)

this scheme will take care of the special cases n= 3,4 and 5. Although straight-
forward, the complete arguments for these special cases involve many details. For
this reason, these proofs are left to the reader. In what follows, we shall rely on
the validity of the statements r(Cs, Bs) = 11, r(Cs, Bs) = 13 and confine our
attention to the case of 7(Cs, B,,) where n > 6.

With [V| = 2n+ 3, let us assume the existence of a two-coloring ( B, B) of
[V1? in which (R) contains no Cs and (B) contains no B,. We shall demonstrate
that this assumption leads ultimately to a contradiction. A useful element of our
argument is a simple forbidden subgraph result which is established by induction.
We claim that in the two-coloring whose existence we have assumed there is no K4
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in (R). To see this, suppose to the contrary that (X)g ~ K4 andlet W =V — X.
The induction hypothesis together with the fact that [W| = 2(n—2) +3 imply that
(W)p contains a B, . Since (R) contains no Cs, each vertex of W' is adjacent
in (R) to at most one vertex of X . It follows that any two vertices w;, w; € W are
commonly adjacent to at least two vertices of X in (B). But this givesrisetoa By,
in (B) and so must be rejected. Thus (R) contains no K. Since r(Cs, Ba) = 11
and r(Cs, Bs) = 13, the induction argument is complete.

Here is the general scheme mentioned earlier. Withuv € Bset X = V —
{u, v} and form the partition X = (RR, RB,BR, BB) by placing z € X in the
appropriate part according to whether the pair (zu, zv) is an element of R x R,
RxB,Bx R,or BxB.LetW = X — BB. By assumption, | BB| < n—1 and
soW > n+2. Weclaim that |RR| < 2. Suppose, to the contrary, that |RR| >3
and note that in this case we must find w;w; € B for every pair of distinct vertices
w; € RR, w; € W in order to avoid a Cs in (R). It follows that w; € RR and
|A (wsw;)| > nfor any two vertices w;, w; € RR. This is in contradiction to our
assumption that (B) contains no By, and so our claim that |RR| < 2 is justified.
Now select uv € B so that the corresponding |RR| is maximal . There are three
cases to consider.

Case 1, RR = ¢. In view of the maximality condition, it follows that zw € B
for every z € BB and w € W. Since (B) contains no By, it follows that BB
must span a complete graph in (R). Again in view of the maximality condition,
RB and BR span complete graphs in (R). Since 2n+ 3 > 15, the coloring just
described cannot fail to have a Cs in (R) and so we have a contradiction.

Case 2, RR = {w; }. In view of the maximality of | RR), each vertex w; € BB
is adjacent in (R) to at most one vertex of RB or BR. Moreover, the maximality
condition implies that if w;w; € R then w; must be adjacent in (B) to all the
vertices of RB and BR. A quick count shows that |A (w;w;)| > n for arbitrary
w;, w; € BB. Hence, BB must span a complete graph in (R). Since there can be
no K4 in (R) and since n > 6, it follows that | BB| < n—3 and so |RB|+|RB| >
n+ 3. Since (R) contains no Cs, wyw; € B for every w; € RB and w; € BR.
Now observe that no vertex can have degree > 2 in (RB)g or (BR)gp. The
reason is that a vertex of degree > 2 in one of these induced subgraphs leads to
either a K4 in (R) or else a violation of the maximality condition. In view of the
last two observations, we find that |A (w;w;)| > n whenever w;, w; € RB or
w;, w; € BR. Consequently, we must assume that RB and BR span complete
graphs in (R) and so find a contradiction as in case 1.

Case 3, RR = {w;, w2 }. In this case, the fact that (R) contains no Cs implies
that wyw, wow € B for every w € RB U BR. Consequently, wiwz € R since
(B) contains no By. If w; € BB is adjacent in (R) to either w; or w,, then w;
is adjacent in (B) to every vertex w € RB U BR. Otherwise, we find a Cs in
(R). We now claim that there cannot be two distinct vertices w;, w; € BB such
that the edges w;w; and w;w, are both in R. Suppose that two such vertices did
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exist. Using the observation just made, a count shows that |A (wiw;)| > n. Now
if wyw; € R, we find a Cs in (R), namely C : u,w;,w;, w;, u. Otherwise, of
course, there is a B, in (B). Hence, our claim is justified. In view of this fact, we
may without loss of generality assume that w; is adjacent in {R) to at most one
vertex of BB. Consequently, w; has degree < 4 in (R). Now observe that no
vertex in BB can be adjacent in (R) to two vertices of RB or BR. The reason
is that, were this to occur, we would find a vertex ws which plays the same role
as does w; and so has degree < 4 in (R). Moreover, wyws € B and, since
there is a vertex (u or v) to which w; and ws are commonly adjacent in (R),
A (wiws)] > (2n+ 1) —7 > n. Now, as in the proof of case 2, we find that BB

must span a complete graph in (R) in order to avoid a B, in (B). Also, as in case
2, there can be no vertex of degree > 2 in (RB) g or (BR) . The reason now is
that such a vertex in one of these induced subgraphs gives rise to either a K4 in
(R) or else the existence of a vertex w4 which acts just as ws did to produce a B,
in (B). The proof is now completed as in case 2. |

Continuation of the process begun in Theorem 1, i.e. complete calculation of
7(Cm, By) form = 7,9,11,..., does not appear to be tractable. Instead, we
limit ourselves to a proof that r(Cy,, B,) = 2n+ 3 forall n > 4m — 13. Even
this demonstration relies on some very special devices. Therefore, it is well for us
to describe the genesis of the proof before getting into any of its details. As is our
custom, with |V'| = 2n+ 3 we assume the existence of a two-coloring ( R, B) of
[V12 in which (R) contains no Cy, and (B) contains no B,. Our aim is to show
that this assumption leads to ultimately to a contradiction. From Theorem 1 we
know that (R) contains Cs (and Cs) so it is certainly not bipartite. There are then
pairs of vertices which are connected in ( R) by paths of both even and odd lengths.
The key idea of the proof is to start with an edge uv € B which is an especially
good candidate for satisfying |A (uv)| > = as a result of constraints which arise
because u and v are connected in (R) by paths of the appropriate lengths, both
even and odd. To give this idea precision, we make the following definitions.
Apath P : x,7,,...,z in (R) will be called a switching path if, for some 1,
1 <1< k—2,there is a two-chord z;z;+2 € R. Anedge uv € B will be called
a key if there exists a switching path P : z1,z,,..., Tm_2 = v connecting u and
v in (R). In what follows, we first prove that a key edge exists and then exploit
its properties.

Theorem 2. Let m be an odd integer > 7 and suppose that n > 4m—13. Then
7(Cm, By) = 2n+ 3.

Proof: The fact that r(Cp,, B,) > 2n+ 3 was brought out in § 3 and, in the
discussion just preceding, the stage has been set for the remainder of the proof.
So we now take aim at our target, the desired contradiction.

We first claim the (R) contains a switching path of order m. Let P : z,
T2,...,T: be a switching path in (R) which is of maximal order. Since (R) must
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contain a triangle, t > 3. We wish to show thatt > m. Suppose, to the contrary,
that3 <t < m. Let X = {z1,22,...,7:} and W = V — X. In view of the path
maximality, for every w € W we have z1w, zyw € B. Since |W| > nand (B)
contains no B,, z1z: € R. Consequently, zw € B foreveryz € X and w € W;
otherwise, the maximality of the path P : z1,22,...,7; is violated. Finally, X
must span a complete graph in (R) in order to avoid a By, in (B). Repetition of
this argument yields a partition V = (X, X2, ..., X¢, Xer1 = W) such that

M 3<|Xil<m,

(i) |X1] > | X2] > -+ > | Xel,
(iii) I;T; € B for every z; € X;, Ij € Xj with 1 # 7,
(iv) X1,X2,...,Xe span complete graphs in (R), and
(v) (W)g contains no triangle.

There are two cases for us to consider.

Case 1, W = ¢. Since 2n+ 3 > 3(m — 1) it follows that £ > 4. Select
% € Xo1 andv € Xp. Thenuv € Band [A(wv)| > 2n+3 -2 [22] > n
Therefore, we reject this possibility.

Case 2, W # ¢. Of necessity, (W) p is not an empty graph. In fact, if |W| =
s > 6 then (W)p contains B; where j > [232]. In this case, (B) contains By
where k > (2n+ 3) — s+ [%2] > n. In the case where (W) p contains an edge
but no triangle, s < 5 and (B) contains By where k > 2n— 2 > n. Reaching
this contradiction, we have thus proved the existence of a switching path of order
m.

We now claim the existence of a key edge. To verify this claim, we start with a
switching path P : z1,32,..., Tr in (R) where the two-chord zxzss2 € R. By
symmetry, we may assume that k < ﬂi'i There are three cases to consider.

Case 1,k > 3. If 12,2 € B then it is a key edge. Similar observations
hold for the edges z; Zm—1 and z3T.,. One of these alternatives must hold, for,
otherwise, C : T1, T2, Tme1>Tm> T3, Td,+--,Tm—2,T1 iS @ Cp in (R).

Case 2,k = 2. If £z, € B then it is a key edge. On the other hand, if
ZT1Zm-—2 € Rand m > 7, then the switching path P : Ty, T;m-1, Tm-2, Z1,
z3,...,Zm-3 falls under case 1. If m = 7, consider the edge x; z¢. Ifz,7¢ € B
then it is a key edge. Otherwise, the path P : z7, z¢, 2, 3, T4, Ts, 1 falls
under case 1.

Case 3, k = 1. Again, if x;2,,_, € B then it is a key edge. Otherwise, the
path P : %, Tpm_1, Tm—2, T1, T2, - - -, Tm—3 falls under either case 1 or case 2.

Now we are ready to exploit the properties of the key edge whose existence has
just been proved. Letuv € B be akey edge where u and v are connected in (R) by
the switching path P : u = 71,%2,...,Zm—2 = v. S&t X = {z1,%22,...,Tm2}
and W = V — X. Form the partition W = (RR,RB,BR,BB) by placing
w € W in the appropriate set according to whether the pair (uw, vw) is an element
of Rx R, Rx B, B x R, or B x B. Further, letus define the sets R, = {w|w € W,
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uw € R} and R, = {w|w € W, vw € R}. In view of the assumption that (R)
contains no C,y,, the following basic facts emerge:

(i) wyw; € B for every pair of distinct vertices w; € Ry, w; € R,
(ii) for every w € BB either {w;lw; € Ry, ww; € R} or {wj|lw; € R,,
ww; € R} is empty.

If (i) does not hold, then (R) contains the m-cycle C : w;, 1, Z2,..., Tm_2,
w;, w;. To see the validity of (i), first recall the existence of the two-chord z zy. 2
in the switching path. If (ii) does not hold, then ( R) contains the m-cycle C : w,
Wis T15T2y-++y Thy Thkt2,---y Tm-2, W5, W.

We now begin to draw conclusions concerning the size and nature of the sets
RR,RB,BR, and BB. Of course |[BB| < n— 1 since (B) contains no B,.
We also claim that |[RR| < 2. Suppose, to the contrary, that |[RR| > 3 and
note that fact (ii) then implies that there are two vertices w;, w; € RR such that
A (w;w;) contains at least one-third of the vertices of BB. This in combination
with the consequences of fact (i) and the observation that |[BB| < n— 1 shows
that wyw; € B and |A (wywy)| > (204 3) =2 —(m—2) — [X=] > n Since
this conclusion must be rejected, our claim that |RR| < 2 is justified.

LetY = BR. (A similar proof will hold with Y = RB.) We assert that either
(Y')p is an empty graph or else there exist two vertices w;, w; € Y such that
w;w; € B and there are at least |Y'|—(m—1) vertices of XUY which are elements
of A (w;w;) . To prove this assertion, we first note that since (R) contains no Cy,,
(Y') g contains no path of order m — 1. Let P : w;, wy, ..., wy be a maximal
length path in (Y') g. Then wyw, wyw € B foreveryw € Y — P. If wyw; € B
our assertion is already proved. Otherwise, wjwe € R and the maximality of the
path yields the fact that w;w € B for every w; € P and w € Y — P. Continuing
in this manner, we find that (Y') is the union of s disjoint complete graphs. If
s =1, (Y)p is an empty graph and our assertion is proved. If s > 1, select two
vertices w;, w; € Y such that w;w; € B. Then w; is a vertex of a complete graph
K, within (Y') . Likewise, w; is a vertex of a complete graph K, within (V') 5. Of
course, a,b < m — 2 and, without loss of generality, we may assume that a < b.
Since (R) contains no C,,, it follows that A (wiw;) contains the set of vertices
{z1,12,...,Zs—1 } from the switching path. Consequently, the number of vertices
of X UY which are members of A (w;w;) is atleast |Y| — (a+b) + (a — 1) >
Y] - (m-1).

Without loss of generality, we may assume that |[RB| < |BR]. Since |RR| < 2,
IBB| < mn—1,and n> 4m — 13, it follows that |[BR| > m — 1. Consequently,
(BR)p isnotan empty graph. We now claim thateither RR or RB is an empty set.
Making the contrary supposition, we select w; € RR andw; € RB such that w; is
of degree at most m—2 in (RB) g. The latter condition s fulfilled by choosing w;
to be an end-vertex of a maximal length path in (RB) ». Also, we select wy, wg €
BR in accordance with the result proved in the last paragraph so that wyw; € B
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and A (wpwe) has at least |BR| — (m — 1) members excluding vertices from
RR,RB,and BB. Let S = A (w;w;) N BB and T = A (wywg) N BB and note
that fact (ii) implies that | S| + |T'| > |BB|. In view of the observations made thus
far, we have

IA (wiw;)| > |RR| + |RB| + |BR| + |S| - m.

and
|A (wywe)| > |RR|+ |RB| + |BR| + |T| - (m — 1)

Adding these two equations and invoking the assumption that ( B) contains no By,
we find that n < 4m — 14, contrary to the hypothesis of theorem. Thus, either
RR or RB is empty.

By a similar argument, we now prove that (R B) p is necessarily an empty graph
and so |RB| < m — 2. Suppose that (RB)p is not an empty graph and choose
w;,w; € RB in accordance with the result proved in the paragraph before last.
Choose w;, wg € BR as in the last paragraph and define S and T" as before. Then
S|+ 17| > |BB,

|A (wiw;)| > |RR| + |RB| + |BR[+ S| = (m — 1)

and
|A (wewe) | > |RR| + |RB|+ |BR|+ |T|—(m —1).

These inequalities lead to a contradiction as in the last paragraph.

By combining the last two results, we find that |RR| + |RB| < m — 2. Let
S = {v}UBRU BB. Then § is contained in the neighborhood of u in (B) and,
by the result just obtained, |S| > (2n+3) —(m—3) —(m—2) = 2n—2m+8.
We now claim that (S) g contains no triangles. Observe that since (B) contains
no B, every vertex of S is of degree atleast |S| —n > n—2m+8 > min (S)g-
If (S) g contained a triangle, we could first find a switching path of order m and
then another key edge as in the argument at the outset of this proof. Applying the
argument up to now to this new key edge, we could find a vertex w € S which is
adjacent to u in (B) and whose degree in (B) is atleast2n—2m + 8. Since, by
assumption, |A (uw)| < n—1, we must have 2(2n—2m+ 8)—(2nt+l) < n—1
and so n < 4m — 14, As this is contrary to the hypothesis of the theorem, our
claim that {S) g contains no triangles is now justified. In particular, this means
that BR spans a complete graph in (B).

In what follows, we shall use the following theorem of

Jackson [5]. With k > 2, let G be a bipartite graph with bipartation V(G) =
(A, B) where |A| = a > 2 and |B| = b > k and suppose that each vertex of A
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has degree at least k where b < 2k — 2. Then G contains a cycle of length 2 2
for all £ satisfying 2 < £ < min (a, k).

Let us apply this result to the bipartite graph G where V(G) = (BR, BB) and
E(G) = {wswx|w; € BR, wx € BB, w;wx € R}. Note that in this graph every
vertex of BR has degree at least n — 2m + 7. Since n > 4m — 13, it follows
that |[BB| < n—1 < 2(n—2m + 7) — 2, i.e. the hypothesis of Jackson’s
theorem is fulfilled. As a consequence of Jackson’s theorem we find that, starting
from an arbitrary vertex in BR as an end-vertex, there are paths in the bipartite
graph of each length 2, 4,..., m — 3. Since (R) contains no Cy,, it follows that
each of the vertices z,, 4, ..., Tm-3 in the original switching path is adjacent in
(B) to each vertex of BR. Let w; and w; be any two vertices in BR. In view
of the condition 2(n— 2m + 7) —2 > n— 1, there are vertices wy, wy € BB
which are commonly adjacent in (R) to w; and w;. Since there can be no triangle
in (S)pg, it follows that wyw, € B. Using the cycles guaranteed by Jackson’s
theorem, one concludes that, starting from w; or w, as an end-vertex, there are
paths in the bipartite graph of each length 3,5, ..., m — 4. Consequently, since
(R) contains no Cp, the vertices =3, s, ..., Tm—4 are adjacent in (B) to both w
and wg. Finally, we note that each vertex w € BB with w # wy, w;y belongs
to either A (w;w;) or A (wgwg). Were this not the case, (S)z would contain a
triangle.

Now here is the situation. With the exception of the vertices w;, wj, Wi, We
themselves, every vertex of V belongs to at least one of the two sets A (wiwy),
A (wiwyg). Since there are 2n — 1 such vertices, it must be that (B) contains a
B;,. We thus obtain the long sought contradiction and the proof is complete. |

5. Large Cycles.

In the proof of the theorem which follows, we make use of some standard results
concerning Hamiltonian graphs and their generalizations. All of these results are
to be found in chapter 7 of [1].

Theorem 3. Forall n>1and m >2n+2,7(Cm,By) =2m— 1.

Proof: The fact that r(Cpm, Bs) = 2m — 1 was noted in § 3. Now let us suppose
that with |[V'| = 2m — 1 there exists a two-coloring ( R, B) of [V]? in which (R)
contains no Cy, and (B) contains no B,. We claim that in (B) there is a vertex,
To, of degree at least m— 1. Otherwise, every vertex would have degree at least m
in (R) and this would make ( R) pancyclic by a result of Bondy [1, p. 150]. Let X
denote the neighborhood of zo in (B). Since (B) contains no B,,, every vertex in
X has degree at least | X|—n > |X|— [252] > ¥lin (X) 5. It follows that (X) 5
is Hamiltonian connected (1, p. 146] and pancyclic [1, p. 150]. In view of the latter,
we must assume that | X | is precisely m— 1. In view of the former, we must assume
that each vertex w € V — X is adjacent in (R) to at most one vertex of X. If w
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is adjacent in (R) to z; and T, and P : 21,%2,...,Tm-1 is the Hamiltonian
path connecting z; and z,,_; in (X)g, thenC @ w,71,%2,.-+, Tm-1, W isaCy,
in (R). Letw;,w; € V — X be two vertices which are adjacent in (B). Since
|V — X| = m two such vertices must exist. As a consequence of the observation
that neither w; nor w; can be adjacent to two distinct vertices of X in (R), we see
that |A (w;w;)| > |X|—2=m —3 > n Butthis gives a B, in (B) and so a
contradiction. .
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