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Abstract. We give a bijective proof for the identity S(n,k) = ("77')(mod2)
where j = ij is the largest integer < f-

In [1], page 46, problem 17b, Richard Stanley asks for a combinatiorial proof
of the identity

S(n, k) = (";i;l)(modz)

Here j = | £ is the largest integer < £. Itis the purpose of this note to provide
such a proof. Recently, Sagan [2] has found a different bijection for the g-analogue
of S(n, k).

For na positive integer, let [n] denote the set {1, ... ,n}. Let P, denote the set
of partitions of [n] into k parts, so that the cardinality of P,k is |Pnk| = S(n, k).
We are going to define involutions f, : Pnx — P,x by induction on n and k.
Clearly, S(n, k) will have the same parity as the number of fixed points of the
involutions fyx.

Let f,n andf,; be the identity mapping for all n. Now suppose we have an
elementin P,x, say « = {Bjy,..., B¢}. Suppose the number = is in block B,. We
define s = max([n] — By). Let the block that s is in be B;. By defintion, i # r.
Clearly the numbers s+ 1,s+ 2,...,n— 1, nareall in B,, since s is the biggest
number not in B,. Our idea is to switch s with the set of numbers s+ 1 to n to get
a new partition, that is, let

fn,k('”) = {Bis )B;c}
where

B if I#4,r
Bi= { (Bi—{shu([nl —[s) ifl=i
(B, = ([ =[s)U{s} ifl=r
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However this won’t work when s is the only element of B; and B, is exactly the
numbers from s+ 1 to n, since we will simply interchange the two blocks without
altering them. In this case, we will forget about the numbers from s to » and work
on the smaller set [ s — 1]. Therefore, let

fak(m) = foo14-2(7w — {Bs,B:}) U{Bi, B;}

Then f, is clearly an involution.
As an example, suppose that w = {{6,5},{4},{3,1},{2}}. Then

f(m ={{6,5},{4},{3},{2,1}}

Now we will count the number of partitions fixed under f,, x . Suppose fyx 1r) =
. If k is even, w must look like

{lnl=[s11,{s1}, [s1—11=[s2],{s2},[s2—11—[s3]...,[sj-1—11—[s;],{s;}}

Wheren > 81 > 8 > --->s; = lands; —1 > s;1. We have that s; = 1
and so0 sj_1 > 3. Hence the number of such = is equal to the number of ways of
choosing j — 1 non-consecutive dots out of »— 3 dots in a row.

If k is odd, then 7 must look like

m={[n] —[s1],{s1},[51 — 11 = [s2],{s2},[s2 — 11 — [s3],

.,[8;-1 —-1] - [sj]»{si}a[si - 1]}

wheren > sy > s3 > --->s; > land s; — 1 > s;4e. We have that s; > 1 and
hence the number of such  is the number of ways of choosing j non-consecutive
dots out of n— 2 dots in a row.

Let g(m, t) be the number of ways of choosing t non-consecutive dots from m
dots in a row. It is well-known and easy to show that

o(m,) = (m _tt+ 1)

Hence, if k is even, S(n, k) = (”‘3'(’ D+1)(mod 2), and this equals ("7.').
If k is odd, S(n, k) = ("‘2;’”)(mod2) and this is equal to ("77}").
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