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Abstract. A triangulation of a surface is 6-regular if each vertex is
contained in exactly § edges. For each § > 7, é-regular triangulations of
arbitrary non-compact surfaces of finite genus are constructed. It is also
shown that for § < 6 there is a §-regular triangulation of a non-compact
surface X if and only if § = 6 and X is homeomorphic to one of the following
surfaces: the Euclidean plane, the two-way-infinite cylinder, or the open
Moébius band.

1. Introduction.

Recently, some authors tried to construct infinite triangulations of
(non-compact) surfaces, which have the property that each vertex belongs
to exactly § triangles. Such triangulations are called §-regular, since their
graphs are §-regular. For example, Lavrenchenko [2] constructs é-regular
triangulations of the torus with finitely or countably many points removed,
for any § > 7. He also shows that such triangulations do not exist for § < 6.

In this paper we construct for each § > 7, é-regular triangulations
of all non-compact surfaces of finite genus. We also prove that §-regular
triangulations with § < 6 do not exist, with three obvious exceptions which
admit 6-regular triangulations. Let us mention that for each g > 0 there are
infinitely many pairwise non-homeomorphic noncompact surfaces of genus
g.

A surface is assumed to have no boundary unless explicitly stated oth-
erwise. It is known [1,4] (see also [3]) that every non-compact surface &
of finite genus is homeomorphic to Z¢ \ A where I is a compact surface,
orientable or non-orientable, and A is a non-empty subset of Xy which is
homeomorphic to an arbitrary closed subset of the Cantor set. Equivalently,
A is a totally disconnected compact metric space. Two such surfaces Iy \ A
and T/ \ A’ are homeomorphic if and only if (£, A) and (Xf, A’) are home-
omorphic pairs. The genus of ¥ is equal to the genus of the corresponding
compactification By. The corresponding set A is called the set of ends (also
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the set of ideal points) of £. Note that the set of ends may be uncountable,
and that also its topology is important.

Closed subsets of the Cantor set can be represented by subtrees of the
binary tree. Recall that the binary tree is a tree T with a root r € V(T2)
such that each vertex v € V(T:) has exactly two neighbours which are
further from the root than v. A subtree of T is a rooted tree T with the
same root r and V(T) C V(T3), E(T) C E(T3). Vertices in T at distance
1 from the root are said to be at level 7. The set of all 1-way-infnite paths
in T, starting at the root, is called the set of ends of T. Each end P of T
is determined by the infinite sequence of the Left-Right turns of P in the
binary tree T,. If we write O for Left and 2 for Right we get an infinite word
consisting of 0's and 2's. Let ¥(P) € [0,1] be the real number between 0
and 1 with the fraction part, if written in the ternary system, equal to the
obtained sequence. It can be shown that the set {)(P); P an end of T3}
is the Cantor set, and that each closed subset of the Cantor set can be
rspresented in this way as the set of ends of some subtree T of T5.

Figure 1. A 6-rim addition

In the construction of §-regular triangulations the following construc-
tion, called adding the §-rim, will be used. Let S be a triangulated surface
with boundary. Choose a boundary component of S, and let C be the
cycle of the triangulation lying on this boundary. Assume that each of
the vertices vy, vs,...,vx on C has degree deg(v;) < 6§ — 1. Denote by
6; := 6§ —deg(v;) the number of edges missing in order for v; to be of degree
6. Add 6; new edges at v; (1 =1,2,...,k) and add also triangles containing
these edges so that each vertex v; is contained in § triangles. Of course, one
edge at v; and one edge at v;y1 (¢ = 1,2,..., k) have a common endpoint,
but the endpoints of the new edges are different elsewhere. See Figure 1
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for an example of the addition of the 6-rim. In this Figure the “outside”
is ment as a triangulated surface. Whenever we will be adding a é-rim,
no two vertices u,v on C with deg(u) = deg(v) = § — 1 will be adjacent.
Consequently, the degrees of all new vertices on the rim will be at most 5.

It is clear by construction that the number k' of vertices on the rim,
after adding a §-rim, is equal to

k

K= (&-1)=Aa-k (1.1)

=1

where A = Ef=1 6;. The new defficiencies 6} (7 = 1,2,...,k') depend on
the degrees of v;. If §; > 2 for each 1, then exactly k among the new k'

vertices are of degree 4, and the remaining k' — k of degree 3. In general
the new sum A’ is equal to

A= ia;. =(6-3)A—(6—2)k (1.2)

which follows by an easy counting argument using the fact that the total
number of edges from v;. to v; is equal to A. Later on we will need the
following simple consequence of (1.1) and (1.2). If A > 2k+1and § > 6
then k' > k and A’ > 2k' + 1.

2. The construction.
The main result of this Section is:

Theorem 1. Let ¥ be a non-compact surface of finite genus, and let 6§ > 7.
Then there exist §-regular triangulations of I.

The rest of this Section is the proof of Theorem 1. Fix ¥ and § > 7.
Let £y be the compactification of £, and let A be the set of ends of %,
so & = Zo\A. Next, represent A by a subtree T' of the binary tree T as
explained in the introduction. We shall construct triangulations of bordered
surfaces, Ro, R1, Rz, ... with the following properties:
(i) Ro € Ry C R; C ... and, moreover, R, Cint Ry, n > 0.
(ii) R, (n > 0) has the same genus and the same orientability type as Xo.
(iii) The boundary components of Ry, are in a bijective correspondence with
the vertices at level n in T, i.e. vertices at distance n from the root.
Moreover, this correspondence admits the following requirement. If
v € V(T) is at level n and u € V(T) is its son at level n + 1 then the
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corresponding boundaries of R, and Rnt1 lie in the same connected
component of R, 1 \int Ry,.
(iv) Each vertex in the interior of Rp has degree 6§, and each boundary
vertex of R, has degree at most 5.
Properties (i) and (iv) imply that R := U;_, Rn is a §-regular triangulation
of a non-compact surface without boundary, while (ii) and (iii) imply that
this surface is homeomorphic to £o\A = X.

Figure 2. Producing vertices of degree 3

It remains to show how to construct the triangulations R,. The initial
one, Ry, is obtained as follows. If X is the 2-sphere, then let Ry be the
triangulation consisting of one inner vertex of degree § and 6 boundary
vertices, each of degree three. Otherwise, choose an arbitrary cellular dis-
section of £y having only one 2-cell. Such dissections are easy to find if X
is not the 2-sphere. It may be assumed that every O-cell of this dissection
is incident with 3 edges (see Figure 2). Now, replace each vertex of such a
dissection by a triangle, and each edge by a triangulated strip connecting
the corresponding triangles as shown on Figure 3. Note that this can be
done in such a way that all vertices of the obtained triangulation Ro have
degree at most 5 and that each vertex lies on the boundary of the obtained
simplicial 2-complex. Then Ry has the required properties (i)-(iv). In
addition, it satisfies
(v) Each boundary component of R,, contains two non-incident edges e;, ez

such that their end-vertices have degree at most four.

This property will be shown to hold also for other Ry, since it is needed
for our iterative construction.

Figure 3. Constructing Rp
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Having constructed R,, define R,; as follows. For each vertex v of
T at level n which has two sons, subdivide the boundary component in R,,
corresponding to v into two parts as shown on Figure 4. In order not to get
vertices of degree more than 6 on the boundary, one can use for the initial
edges of the subdividing strip the two edges ¢;, e; whose existence is guar-
anteed by (v). Add now, to each of the boundary components (including
those which were not subdivided) a §-rim, and call the obtained 2-complex
R, +1. Although there might have been vertices of degree 6 on the boundary
before the 6-rims were added, no two such vertices are adjacent. Therefore
all boundary vertices of R,; have degree at most 5.

0

€1 €2

N Y,

Figure 4. Subdividing

Using (iv), (v), and the assumption § > 7 one can show by applying
(1.1) and (1.2) (see also the remark after (1.2)) that the number of vertices
on each of the boundary components gets larger and larger, and therefore
no boundary component can disappear after adding a rim. Now it is clear
that R, ; has the required properties (i)-(v), and our proof is complete.

3. Non-existence of §-regular triangulations.

Theorem 2. Let ¥ be a non-compact surface. Then ¥ admits no 6-regular
triangulations for § < 5, and ¥ admits a 6-regular triangulation if and only
if either

(a) T is homeomorphic to the 2-sphere with 1 or 2 points removed, or
(b) T is homeomorphic to the projective plane with one point removed.

The rest of this section is devoted to the proof of Theorem 2. Let us
first construct 6-regular triangulations of X in cases (a) and (b). The two
cases for the 2-sphere are well-known 6-regular tessellations of the plane,
or the infinite cylinder. The projective plane is also simple. Start with a 4-
regular triangulation of the MSbius band (with all vertices on the boundary;
see Figure 5 where the edge zy on the left is identified with the edge on
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the right), and then add 6-rims one after another ad infinitum. Any 6-rim
addition preserves the number of vertices on the boundary, and all of them
are of degree four, hence the construction is correct.

T\/\/\ Y
y T

Figure 5. Mobius band

In proving the non-existence part of Theorem 2, the following lemma
will be needed. Let us recall that a subcomplex K; of a 2-dimensional
triangulation is said to be pure if each simplex in K is contained in some
2-simplex of K. For a vertex v in Kj, let k(v; K1) denote the difference
between the degree of v in K; and the number of 2-simplices of K; which
contain v. The vertex v is a boundary vertez of K, if k(v; K1) > 0. We
shall use the following notation. Let B(K;) be the set of boundary vertices
of K;, D(K;) the sum of the degrees in K; of the vertices in B(K;), and

let k(K1) := Y oep(k,) ©(v; K1)

Lemma 1. Let K be a 6-regular triangulation of a non-compact surface.
Let K, be a pure subcomplex of K with finite boundary B(K,). Then
there is a pure subcomplex K, of K such that Ko C K;, K \ Ko is finite,
and it satisfies

D(K1) < |B(K1)|6 — 2 k(K}) . (3.1)

Proof. Assume that there is a counterexample, and let k be the smallest
possible number for which there is a subcomplex Ko of K not having a
required extension, and with k(Ko) = k. Obviously, k£ > 0. If a connected
component of K\Kp is finite we may add it to Ko obtaining a smaller
counterexample since any finite extension of the obtained complex is also
a finite extension of K. If there is a 2-simplex T' in K'\Ko which has two
of its edges in Ky, let K be the complex obtained by adding T to Ko.
Since k(K}) < k, and any extension of Kj is also an extension of Ko, we
contradict the minimality of k. So we may assume that none of the above
cases holds for Kj.

Let K; be obtained from K, by adding to Kj all triangles of K which
have a vertex in common with Ky. Let Ey be the set of boundary edges of
Ko, and let E; be the set of edges lying on the boundary of K;. Each vertex
v € B(Ky) is contained in exactly 2x(v; Ko) edges from Eo. Consequently,

1
|Eo| = 5 > 2k(viKo) =k (3.2)
vEB(Ko)
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and similarly we see that |E;| = k(K1). Each edge in E, lies in a unique
2-simplex which has its third vertex on B(K,). Each vertex v € B(Ko)
determines in this way at most § — d(v) — x(v; Ko) edges of E1, where d(v)
is the degree of v in K. (Here we used the assumption that no 2-simplex of
K\ Ko has two of its edges in Ko.) Using this and | B(Ko)|6 — D(Ko) < 2k
(since Ko is a trivial extension of itself) we conclude that

k(K = |E|< D (6 d(v) — s(v; Ko))
vEB(Ko)

= |B(Ko)| § — D(Ko) —k < k.

By the minimality of k there are extensions of K satisfying the inequality
(3.1) which contradicts the non-existence of such extensions for Ko.

The rest of the proof of Theorem 2 goes as follows. Assume we have
a §-regular triangulation K of & = o\A, where § < 6. If & has a finite
genus then let Ko be a finite subtriangulation of K which has the same
genus as ¥ and r’ < oo compact boundary components. Clearly there is
no question about the existence of Ko since T is of finite genus. On the
other hand, if the genus of ¥ is infinite, let K, be a finite subtriangulation
of K with large finite genus (> 2). We may assume that each component of
K\ K, is infinite. Let K; be a finite extension of K, satisfying (3.1). Since
all components of K \ Ko are infinite, the number of boundary components
did not decrease. Denote their number by r. Also denote by 4 the closed
surface of the same genus and orientability type as K;.

Denote by n the number of vertices of K1, and let B = B(K:), D =
D(K,), and k = k(K;). Standard counting arguments show that

#edges in K; = %(N& + D) (3.3)

and 1
#2-simplices in K; = E(N 6+D—k) (3.4)

where N = n — |B| is the number of inner vertices of K. In proving (3.4)
we also used (3.2). Now we may apply the Euler’s formula to get:

1
xwa=n-§m$+m+§ww+p—@+r

where x(Z}) is the Euler characteristic of %!. After a short calculation this
reduces to

6(x(Sh) — ) = (6 — 5)N +6|B| - D — 2k . (3.5)
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Since 6|B| — D > 2k, (3.5) implies
6—6
(e ) 2 0N 9)

Since r > 1 and N is arbitrarily large, it follows that § = 6 and either
x(Z4) = 2 with r = 1, or 2, or x(£5) = 1 with r = 1. In both cases
Lo = T4 by our choice of £j. If K has more than r ends we might have
taken K; with more boundary components. Hence we may conclude that
all of the admissible possibilities are our exceptional cases (a) and (b), and
we are done.
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