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Abstract. Behzad has conjectured that a simple graph G can always be totally coloured
using two more colours than the maximum degree in G. The conjecture has been veri-
fied for several special classes of graphs by Behzad, Chartrand and Cooper, Rosenfeld,
and Meyer, and by Vijayaditya for graphs with maximum degree less than or equal to 3.
‘We show algorithmically that the conjecture is true for graphs with maximum degree 4.

Introduction

Definition: A total colouring of a graph is a colouring of the vertices and edges
such that no two adjacent or incident objects receive the same colour.

The Total Colouring Conjecture (Behzad [1]) states that a graph G can al-
ways be totally coloured using A (G) + 2 colours, where A (G) is the maximum
degree of any vertex in G. Itis clear that the minimum number of colours needed is
A (G) + 1, since the vertex having maximum degree and all its incident edges must
receive distinct colours. The conjecture has been verified for complete graphs by
Behzad, Chartrand, and Cooper [2], for bipartite, complete tripartite and complete
balanced k-partite graphs by Rosenfeld [8], for graphs which are composed of
stable sets of equal size arranged in a cycle by Meyer [6], and for graphs whose
maximum degree is 3 by Vijayaditya [9]. We show that the conjecture is true for
graphs with maximum degree 4.

Theorem 1 (K6nig [5]). A graph with maximum degree A can be imbedded in
a A -regular graph.

We present an algorithm that totally colours a 4-regular graph using 6 colours.
It will then follow from Theorem 1 that any graph with maximum degree 4 can be
totally coloured with 6 colours. The following definitions and theorems will be
needed for the development to follow.
Definitions: A 2-factor of a graph G is a spanning subgraph F' of G such that
each vertex in V(@) has degree 2 in F. If G can be represented as the edge sum
of 2-factors, then G is 2-factorable.

Note that a 2-factor consists of a collection of vertex disjoint cycles.

Theorem 2 (Petersen [7]). A non-empty graph G is 2-factorable if and only if
G is 2 k-regular for some k > 1.

Thus any 4-regular graph can be expressed as the edge sum of two 2-factors.

Theorem 3 (Brooks [4]). Any connected graph which is neither an odd cycle nor
complete can always be vertex coloured using at most A (G) colours.
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Totally Colouring a 4-Regular Graph

Let G be a 4-regular graph. The Total Colouring Conjecture has been shown to be
true for complete graphs in [2], so we assume that G is not complete. By Theorem
2 above, any 4-regular graph can be decomposed into two 2-factors, Fi and F.
Each 2-factor is the disjoint union of cycles. The algorithm to totally colour a
4-regular graph works in three stages.

The first stage colours the vertices legally using only four colours. (This is
always possible by Theorem 3.) The second stage colours the edges of F using
the same four colours used to colour the vertices, without recolouring any vertex,
so the vertices remain legally coloured for the original graph. The third and final
stage, which is the most complex part of the algorithm, uses the fifth and sixth
colours to colour the edges of F,. It is often necessary to recolour previously
coloured edges and vertices in this stage.

Begin
For each cycle C = {v1,e1,..., Un, €n,v1 } Of F1 dO
Begin
If colour (v;_1) = colour (vi.y) foralli=1,...,m, then

{the cycle is even and uses only two colours}
colour the edges of C alternately with the remaining two colours
Else
{there exists k with colour (vg-1) 7 colour (vi+1) }
Begin
Relabel C so that vi becomes v, ;
Colour e; with colour (v,) which ¥ colour (v2) or colour (v1)
Fori=2,...,n— 1 {ei_1,v;, and v, have been coloured}
Colour e; with the one colour free at e;;
{Now e1, €41, v and v; are all coloured but from above
colour (e,) = colour (v,)}
Colour e, with the (at least) one colour free at ey;
End {Else}
End {For}
End. ,

Given that the vertices of G have been legaily coloured using four colours,
this algorithm colours the edges of each cycle of Fy without recolouring any ver-
tex. A cycle will be described {vy, e1,v2,- - ,Un, €n,V1}, Where e; is the edge
connecting the nodes v; and v;4 . For ease of notation we will consider vy = v1.
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Referring to the comments in the text of the algorithm, it is easily seen that
the algorithm correctly colours the edges of F; without recolouring any vertex,
thus the vertices remain legally coloured in G.

Now we want to extend this colouring to a total colouring of G by colouring
the edges of F. Let Z be a cycle component of F5. If Z is an even cycle, then
the edges of Z can be coloured alternately with the 2 colours which have not been
used so far. If Z is an odd cycle, then we will show the following:

If Fy is coloured with the colours {a,b, c,d}, then every odd cycle Z of F
can be coloured using only the additional colours e and f and recolouring at
most one vertex, v, of Z with e (or f). If such a vertex v is coloured e (or f),
then one edge incident to v will be coloured f (or e).

Letvy,..., v, be the consecutive vertices of Z and let E; be the set of colours
used on the edges in F} that are incident to v;. If E; U E;, = {e,b, ¢, d} for all
i, then E; = E,, for all 1, where we consider E,.; = F}, etc.. Since Z is an odd
cycle,n—1lisevenand we have E, = E3 = --- = E,y = E; = ---. This is
a contradiction. Hence there exist v; and v;41 such that E; U E;yy # {a,b,c,d}.
Consider the edge v;v;:1 and suppose that a ¢ E; U E;,. If neither v; nor v,y
is coloured a, then we can colour v;v;,.1 with a and the rest of the edges of Z
alternately with e and f. Since the edges and vertices of Fy are coloured using
only {a, b, ¢, d}, this will give a good total colouring.

Now suppose one of the vertices v; and v;,1 is coloured a. Without loss of
generality, suppose that v; is coloured a. If Z is the first cycle of F; to be coloured,
then colour v;v;,; with colour a, colour v; with colour e and colour the remaining
edges of Z alternately with colours e and f starting with e. Since both v; and v;4
cannot be cojoured a, this gives a good colouring of Z in which exactly one vertex
has been recoloured with e. However, if several cycles of F, have already been
coloured, it may be the case that v; has neighbours which have been recoloured
with e. Note that since each vertex is only on one cycle of F;, none of the vertices
of Z will have been recoloured, so such a neighbour is not on Z. Also notice that
as we colour cycles of F>, we may allow a vertex to recoloured e or f, but this
doesn’t affect the colours on vertices of cycles which have not yet been coloured.
If f does not appear at a neighbour of v; then interchange the roles of e and f in
the above colouring of Z.

We now suppose that v;’s two neighbours, z and y, not on Z are coloured
with e and f respectively. Since (inductively) at most one vertex in an odd cycle
is coloured with e or f, z and y are in different odd cycle components, Z; and
Z,, of F5. Also (inductively, given our colouring procedure), one of the edges
incident to z (y) in F5 is coloured f (e). If z (or y) does not have a neighbour that
is coloured f (or e), then we could interchange e and f in Z; (or Z;), making e
(or f) available to colour v; as above. Note that this interchange would not affect
the rest of G, since z (or y) is the only vertex coloured e (or f) in Z; (or Z2).
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Thus we have managed to colour Z unless x and y have neighbours coloured
f and e respectively. The rest of our algorithm is devoted to handling this case.

We summarize again the situation:

The colour o ¢ E; U Ej, v is coloured a and is adjacent to vertices x
and y in Fy which are coloured e and f respectively. Further, T has a neighbour
coloured f and y has a neighbour coloured e.

Let the edges in F; adjacent to v; be coloured b and c. If neither v;_; nor
v+1 is coloured d, then we could recolour v; with d, colour v;v;,1 with a and the
remainder of Z alternately with e and f. Thus we suppose that at least one of v;_;
and v;4; is coloured d, and so either b or ¢ is not used at v;_; nor at vi41. We
assume that b is this colour, so that if we are able to recolour the edge v;z, which
is currently coloured b, we will be able to use the colour b to colour v;. (If ¢ is
the colour not at v;_; Or v;4; the argument below proceeds using Z, instead of
Z,.) Finally, let {w; = z,wy,--- , wn} be the vertices of Z;, and let e; denote the
edge from w; t0 w;s1, where wqe 1 = wy. Since, inductively, only one edge of Z;
has been coloured with a colour other than e or f, we have that one of e; or e, is
coloured £ and the other is coloured some colour a # b. Let 4 # b (and # o) be
the colour of the second edge of F incident to w; . (So the edge coloured  has
wy as one endpoint and its other endpoint is coloured f.)

We will proceed by analyzing the possible cases given the current situation.
The following subsection describes a situation that is common to several of the
cases, and an operation (“shifting”) to deal with such a situation. The final sub-
section gives a colouring of Z in all possible cases, possibly using the shifting
procedure.

2.1 The Shifting Procedure

Given the setting described above, let B be the colour of wz. In general, it is
possible that 3 is the same as either ~ or , but the shifting procedure will only be
called when a, $, and ~ are distinct and are all not equal to b. Thus we assume for
now that {e, 8,7} = {a, ¢, d}. The shifting procedure will recolour the edges of
Z, and all vertices but w;, without using the colour o on e; Or e,. The colourings
in the following subsection will make use of the fact that o has been “freed up” to
both colour w; and Z.

Define m(w;) = {a, b, ¢, d} — colour (w;) — colour (two F edges incident
tow;), fori = 1,...,n. So|m(w;)| = 1fori =2,...,nand |m(wy)| =
2. The shifting procedure, given below in algorithmic form, calls a subroutine
“BACKUP”, whose statement will follow that of the shifting procedure. Let
¢(2) = colour(z),forallz€ VUE.

280



Begin {SHIFTING}
Uncolour w; and all edges of Z;
Leti =2 and let done = false.
{ Note: B = c(w2) € m(w1) }
While ¢ < nand done = false do
Begin
{ Note: By induction c(w;) € m(w;—1) }
Case 1: If w; is not adjacent to both a vertex coloured e and one coloured f,
then
Begin
c(ei—1) « c(w;) € m(w;-1);
c(w;) — e (or f);
colour remaining edges in Z; f and e (or e and f) alternately;
done «— true
End{If}
Else
Case 2: w; has neighbours coloured e and f.
Begin
If m(w;) = c(wie1) theni — i+ 1
Else m( 'w,-) # C( ’w,'.,.l)
Begin
If m(w;) = c(w;_1), then call BACKUP(i);
dome « true
Else {m(w;) # c(wi-1)}
Begin
c(ei_1) « c(w;) € m(wi—1);
c(wi) — m(w;) # c(wi—1) or c(wis1);
colour remaining edges of Z; e and f alternately ending with e,
coloured f;
done — true
End{else}
End{Else}
End{Else (Case 2)}
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End{While}
{ Now,i=n+ 1, done = false, and m(wn_1) = c(wn) 3
If m(w,) # c(wq-1), then
Begin
c(en-1) « c(wn);
c(wy) — m(wy);
colour remaining edges of Z; f and e altemnately, with e; coloured f
End{If}
Else { m(wy) = c(wn-1) }
Call BACKUP(n)
End{SHIFTING}

Given the fact that, by induction, c(w;) € m(w;—_1) at each stage of the algo-
rithm, it is not hard to see that Z is legally coloured when BACKUP is not called.
(The algorithm checks colours of w;_; and w;.1).) Note that SHIFTING termi-
nates immediately after returning from BACKUP. We now describe BACKUP.

BACKUP is called with parameter k, when m(w;) # c(wgs1),butm(wy) =
c(wg_1). Also, forall 2 < 1 < k, e(w;) € m(w;_1).

Begin{BACKUP}
Let temp «— c(wyg);
c(wi) — m(wg) # c(wie1);
{ Now temp = m(wg—_1) = previous value of c(wy) }
1<k
While c¢(w;) = c(w;_;) do
Begin
temp — c(w;_1) = m(w;_2);
c(wi_1) « m(w;_1);
1—1—1
End{While}
{ Note: Now temp = m(w;_1) = previous value of c(w;) and now c(w;) #
c(w;i-1).}
c(ei_1) « temp
Colour remaining edges of Z; with e and f alternately
End{BACKUP}. |
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We now verify that if SHIFTING terminates after executing BACKUP, the
colouring of Z; (with w; left uncoloured) is legal. First note that BACKUP will
terminate with 4 > 2, since w; is uncoloured. When w;_; is assigned the colour
m(w;_1) we know that now c(w;_1) 7 c(w;). Also, by definition of the function
m, there is no problem with the F; edges incident to w;_;. It is possible that now
c(wi—1) = c(w;_2), in which case we iterate. When edge e;_; is coloured temp ,
temp is m(w;_1), so the colouring is legal at w;_; . Further, temp is the previous
colour of w;, which is not the current colour of w;, nor could it be the colour of
any edges incident to w;.

It should be noted here that the shifting procedure may sometimes be called
with the indices of the vertices on Z; reversed; this has the effect of performing
the shift in the reverse-direction.

The shifting procedure will result in one of the following situations:

1. If wy has no neighbour coloured e (or f), then the procedure stops with 1 = 2
and: ,

a) c(e1) =p;

b  c(w2) €{e, f}

) c(en) €{e, f};and

d) c(w,) is unchanged so that c(w,) ¢ {a, e, f}.
2. If wy has both aneighbour coloured e and one coloured f, but m(wz) # c(ws),
the procedure stops with:

a)  c(w2) = m(w2);

b) c(w,) unchanged so that c(w,) ¢ {a,¢€, f};

¢) c(e1) =p;and

d) c(es) = 1.
This situation also could result from the call of BACKUP.
3. If the shift occurs at some i > 2, the procedure terminates with:

a) c(ep) = e (or f); and
b) c(es) = f (ore).
This situation could also result from the call of BACKUP.

2.2 Completing the Colouring

Given the setting described in italics above, we will give colourings of w;, the
edge w; v;, v;, and the edge v;v;.1, as a sequence cy, ¢z, ¢3, c4. (Recall we are as-
suming that one of v;_; and v;, is coloured d and that neither of them is coloured
b.) The colour c4 will never be e or £, so after colouring wy, w1 v;, v; and v;v;s1
with such a sequence, the remaining edges of Z can be coloured e and f alter-
nately. (Note that v; may be recoloured e in which case the edge v;_ v; must of
course be coloured f.)
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Ifd ¢ {a,~}, then the colouring sequence e, d, b, a can be used, so assume
thatd € {a,7}.

Case 1: o = d. Then it must be thaty = a orc.

If neither w, or w, is coloured {a, c} —+, then colour {a, c}—1, b, ¢, a. Thus
assume that at least one of w, and w; is coloured {a, c}—~. If c(w2) = {a,c}—7,
then invoke the shifting procedure. If c(w,) = {a, c} -7, then invoke the shifting
procedure with the indices of the vertices of Z; reversed.

If the shift yields situation 1 above, then wy (or wy) is coloured e or I, e,
(or e,) is coloured {a, c} — 7, and e, (or e;) is coloured e or f. If w, (or wy) is
not coloured d then colour d, b, e, a. Otherwise colour b,d, e, a.

If the shift yields situation 2, then neither w; nor w, are coloured e or f and
together e; and e, have colours {a, c} —~ and f. In this case we colour e, d, b, a.

If the shift results in situation 3, then e; and e, together have colours e and
£.1fb € {c(wy),c(w,)}, then {c(w2), c(wy),~} intersects with at most two of
{a, ¢, d}. Use the (at least one) free colour in {a, c, d} to colour w; and then colour
v;wi, vi, and vvis With b, e, a respectively. Otherwise, b ¢ {c(w2),c( w,) } and
colour b, d, e, a.

Case2: y=d. Thena=aorc.

The vertex adjacent to wy on Z3 that is coloured f will be denoted 2. Note
that one edge incident to z must be coloured e (since on any cycle of F, we colour
at most one edge a colour other than f or €). Denote by m(z), the colour in
{a,b,c} not on edges incident to z. If m(z) € {{a,c} — e, b}, colour w; z with
m(z), then colour e, d, b, a. So assume that the edges incident to z are coloured
{d,e, {a,c} — a,b} and thus m(2) = a.

If {a,c} — « does not occur on either w, or wy, then colour as follows:
{a,c} — a,b,e,a.

If {a,c} — a occurs at wy then invoke the shifting procedure. If it occurs at
wy, then invoke the shifting procedure with reversed indices.

If the shift yields situation 1, then one of wa and w, is coloured e (or f).
Together, the edges e; and e, use the colours {a,c} — o and e (or £). If the other
of wy and w, is coloured d, then colour a, b, e, a. Otherwise, recalling that « is
not used at z, recolour the edge w; z with « and colour d, b, e, a.

If the shift yields situation 2, then neither w; nor w, are coloured e. We again
recolour the edge w; z with « and then colour e, d, b, a.

Finally, suppose the shift produces situation 3. Then e; and e, together use
the colours e and f. We recolour w; z with o.. Now one of {{a, c} — @, b, d} does
not occur on wy, or wy. Use this missing colour on wy . Colour v;w; with a colour
in {b,d} — c(w). Finally let c(v;) = e and c(viv541) = a.
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We have proved the following:
Theorem 4. A 4-regular graph can be totally coloured using at most 6 colours.
Applying Theorem 1, we have

Corollary. A graph with maximum degree 4 can be totally coloured using at
most 6 colours.

We conclude by noting that our argument for 4-regular graphs does notextend
to 2 k-regular graphs with £ > 3. The first place where a generalization of our
proof technique breaks down is in the second stage. Given that the vertices of a
2 k-regular graph have been legally coloured, it seems difficult to colour the edges
of a 2( k — 1) -regular subgraph without recolouring any vertex and using only 2 k
colours.

Evenif this initial problem were overcome, in trying to extend the 2 k-colouring
of a graph minus a 2-factor to a colouring of the entire graph, the attempt to colour
acycle as done here fails. If Z is an odd cycle with vertices {v;,--- , v, } it may
be the case that |E; U E;.1| = 2k for every 1, so that there is no one of the 2k
colours available to start the colouring of Z.
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