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Abstract. A packing design (briefly packing) of order v, block size k, and index )
is a pair (X, D) where X is a v-set (of points) and D is a collection of k-subsets of
X (called blocks) with cardinality b such that every 2-subset of X is contained in at
most \ blocks of D. We denote it by SD(k, ); v,b). If no other such packing has
more blocks, the packing is said to be maximum, and the number of blocks in D is the
packing number D(k, \; v). For fixed k, A and v, the packing problem is to determine
the packing number. In this paper, the values of D(5,2; v) are determined forallv > §
except 48 values of v.

1. Introduction.

A packing design (briefly packing) of order v, block size k, and index X is a pair
(X,D) where X is a v-set (of points) and D is a collection of k-subsets of X
(called blocks) with cardinality b such that every 2-subset of X is contained in at
most X blocks of D. We denote it by SD(k, X; v, b) . If no other such packing has
more blocks, the packing is said to be maximum, and the number of blocks in D
is the packing number D(k, ); v). For fixed k, ) and v, the packing problem is to
determine the packing number.
The following is a special case of the Johnson bound (see [6] or [10])

D(k, \;v) < [v/k[A(v — 1) /k —1]] = $(k,X; v) CRY

where [x] is the largest integer satisfying [z] < =z.

The values of D(3, \; v) are determined in [4,10]; D(4, 1; v) are determined
in [3]. Recently, A. M. Assaf [1] and Alan Hartman [5] have studied the packing
number D(4, \; v) and determined them all. In this paper we are concerned with
the number D(5, 2; v). We shall prove the following.

Theorem 1.1. The equation (1.2) holds foreach v > 5 except for the values of
v shown in Table 1.

P(5,2;v) —1 ifv=70r9 (mod 10)

1.2
¥(5,2;v) otherwise (12)

D(5,2;v)={
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Table 1

13 15 16 17 18 19 26 27 28 29 33 36 38 39
44 48 66 67 69 73 76 771 78 79 80 84 86 88
93 97 99 167 169 197 199 226 228 236 238 276 278 288
326 338 339 438 439 526

2. Preliminaries.

In this section, we shall define some terminology and state some fundamental
results which will be used later. First, we define a useful generalization of an
almost packing design (see, for example, [4]), called a maximum almost pack-
ing design. Let v,w be positive integers. A maximum almost packing design
MSD(k, );v(w),b) is a triple (X,Y, D), where X is a v-set (of points), Y is a
w-subset of X and D is a collection of b k-subsets of X (called blocks) which has
the following properties:

1) b=k, xv) — (kA w);

(2 foranyB€D,|BNY|< 1;and

(3) each pair of distinct points z and y from X where at least one of x
and y does not lie in Y', occurs in at most X blocks of D.

We adopt the convention that ¥( k, X\; w) = 0 when w is a nonnegative integer

less than k, and we admitY = ¢. The set Y is referred to as the hole of the design.

Clearly a MSD(k, \; v(w),b) is a SD(k, \; v,¥(k, ); v)) wheneverw=0 or 1.
The next two lemmas are fairly obvious.

Lemma 2.1, Ifthereexistsa MSD(k, \; v(w),b) and D(k, \; w) =9 (k,); w),
then D(k,); v) = P(k,\;v).

Lemma 2.2. Ifthere are both M SD(k,  \; v(w),b) and MSD(k, ; w(u),b’),
then there is a MSD(k, \;v(u),b+ b').

We assume that the reader is familiar with Wilson’s “Fundamental Construc-
tion”. For the details the reader is referred to [13]. For the definition of pairwise
balanced design (PBD) and balanced incomplete block design (BIBD), group di-
visible design (GDD), transversal design (TD), resolvable BIBD (RBIBD) and
resolvable GDD (RGDD), see [2,4,13]. Sometimes we shall use the “exponen-
tial” notation to indicate the group-type (or type) of a GDD. If e ¢ K, then
(v, K U {e*},1)-PBD denotes a (v, K U {e}, 1)-PBD which contains a unique
block of size e and if e € K, then (v, K U{e*},1)-PBDisa (v, K, 1)-PBD con-
taining at least one block of size e. We need the following lemmas, the first two
are taken from [4] and the last two are taken from [2,9,11,12,14] respectively.

Lemma 2.3. A (v,5,1)-BIBD exists for any integer v > 5 satisfyingv = 1 or
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5 (mod 20) and a (v, 5,2)-BIBD exists for any integer v > 5 satisfying v = 1
orS (mod 10) and v # 15.

Lemma 2.4. There is a GIX5,2,2;12). There is a GD(7,2,r;7r) for any
positive integer r.

Lemma 2.5. There exists a TD(5,n) if n > 4, n # 6,10. There exists a
TD(6,n) if n>5,n#6,10,14,18,22,26,28,30,34,38,42,44, or 52.

Lemma 2.6. There is a (v,{5,9*},1)-PBD if v = 9 or 17 (mod20) and
v¢ E. Where E = {17, 29,49, 57,69, 77, 97, 117, 129, 137, 157, 169, 197, 277,
397, 449, 497, 557, 577, 637, 717, 749, 777, 797, 897}.

Again, some known results on RBIBD, RGDD and (v, 6, 1)-BIBD will be
used, our authority is [8,15,16] unless another reference is given. We shall also
involve the notion of IPBD and IGDD, which we describe below.

An incomplete PBD (IPBD) of index ), denoted by (v, w; K, \)-IPBD is a
triple (X,Y,.A) where X is a v-set (of points), Y C X, and A is a collection
of subsets of X (called blocks) with sizes from K which satisfies the following
properties:

(1) foranyA€ A|ANY|< 1,and
(2) each pair of distinct points z and y from X where at least one of x
and y does not lie in Y, occurs in exactly X blocks.

Hence, Y is the hole. If K = {k}, we briefly write (v, w; k, \)-IPBD for
(v, w; {k},))-IPBD. Note that (X,Y, A) is an (v, w; k, 1)-IPBD if and only if
(X,AU{Y}) is a (v,{k,w*}, 1)-PBD. Moreover, a (v, w; k, \) -IPBD can be
produced from such a (v, w; k, 1)-IPBD by taking X copies of each block in A.
And then as an immediate consequence of Lemma 2.3, 2.6, we have the following.

Lemma 2.7. Let ) be a positive integer. Then
(1) thereisa (v,5;5,)\)-IPBDif v=1 or5 (mod20) andv > 5;
(2) thereisa (v,9;5,)\)-IPBDif v=9 or 17 (mod 20) andv ¢ E
which is the same as in Lemma 2.6.

Now we define the concept of IGDD. An incomplete GDD (IGDD) of index
)\ is a quadruple (X, Y, G, .A) which satisfies the following properties:

(1) X isasetof pointsand Y C X (called a hole),

(2) @ isapartition of X into groups,

(3) A is a set of blocks, each of which intersect each group in at most
one point,

(4) no block contains two members of Y, and

(5) every pair of points {z, y} from distinct groups such that at least
one of z, y is in X \Y, occurs in exactly \ blocks of A.
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We say that an IGDD (X,Y,G, A) isa (K, ))-IGDD if |A| € K for every
block A € A. The type of the IGDD is defined to be the multiset of ordered pairs
{(|G|,1GNY]) : G € G}. As with GDDs, we shall make use of an “exponential”
notation to describe type. By (k, »)-IGDD we mean a ({k}, \) -IGDD.

For the convenience of notation, in what follows we respectively write ¢(v),
MSD(5,2; v(w)) for ¥(5,2;v), MSD(5,2; v(w),b) and define

B(k) = {v: a (v,k,1)-BIBD exists},
RB(k) = {v: a (v, k,1)-RBIBD exists},
IP,(w) = {v: a (v,w;5,))-IPBD exists},
MSD(w) = {v: a MSD(5,2; v(w)) exists},
M={v: a 8D(5,2;v,9(v)) existsorv=0,1,2,3,4}.

As mentioned earlier, we know that v € M is equivalent to v € MSD(0) N
MSD(1) wheneverv > S.

3. Direct Constructions.

In order to establish our results, we shall employ both direct and recursive con-
structions. In this section we shall construct directly some designs for 16 values of
v which form the base of the general solution of the packing under consideration.

Lemma 3.1. There exists a SD(5,2;v,¢%(v) —1)if v="7 or9.
Proof: Forv =7,let X = Z;. Then the blocks

{0,1,2,4,6} {0,2,3,4,5} {0,1,3,5,6}

form the required packing design.
Forv =9,let X = Zy. Then the set of blocks

{0,1,3,5,6} {0,2,4,5,6} {
{0,1,4,7,8} {1,2,3,6,7} {

form the required packing design.
Lemma 3.2. {6,8,14,24} C MSD(2).
Proof: Forv =6, let X = Z¢. Then the blocks

{0,1,2,3,4}
{0,1,2,3,5}

form a M SD(5,2; 6(2)) with the hole { 5,4}.
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For v = 8 let X = Zg. Then the blocks

{0,1,3,4,5}  {0,2,3,4,6}
{0,1,2,6,7}  {1,2,4,5,7}

form the required M SD with the hole { 5,6}.
Forv=14,let X = Z3 U{A, B,C, D, R,Q}. Take the following blocks:

{4,3,4,5,6} {A4,0,1,2,7} {A,C,R,0,4}
{A,C,R,2,6} {A4,D0,Q,1,5} {4,D0,Q,3,7}
{B,0,2,3,5} {B,1,4,6,7}  {B,D,R,0,4}
{BJD’R)2)6} {B)C’Q’IJS} {B’C’Q)3’7}
{C,0,5,6,7} {C,1,3,2,4} {D,2,4,5,7}
{D,0,1,3,6}

Then these blocks form a M SD(5,2; 14(2)) with the hole { R, Q}.

For v = 24, proceed as follows. Ina (25, 5, 1) -BIBD, we delete one point to
obtain a GD(5,1,4;24) and denote it by (Z23 U {o0},G,A1). Let Go = {00,0,1,2}
€Gand A; = {GU {0} : G € GandG # Go}. Take A3 = {{j,j+ 1,5 +
4,j+6,7+13}:0 < j < 22}. We then obtain a MSD(5,2;24(2))(Zx U
{00}, {0, 00}, A1 UA; U A3).

Lemma 3.3. {34,488} C M.

Proof: For v = 34, we have 4(34) = 108. Take Y = {oo; : 1 < ¢ < 9}
and X = Z»3 UY. Use Lemma 2.7 and construct a (37,9;5,1)-IPBD on X with
the hole Y. Denote its blocks by A. Let .A; denote the block set from A by
replacing the symbol co7, oog and cog by 004, 005 and cog respectively wherever
they occur. In addition, it has been shown that there exists a RGD(4,1,3;24) (see
[7). This provides us a GD(5,1,{3,7};31) of type 387!. We construct such a
GDD on X U {001,003, 003} such that {oo1,003,003} and {1,2 ... 7} are its
two groups. We write A, for block set of the GDD. Take S = {1,2,3,4,5}. It
is easy to check that (X U{oo0; : 1 <1< 6},{00;: 1 <1< 6}, A1UAU{S})
isa MSD(5,2; 34(6)). This guarantees that 34 € M by Lemma 2.1 and 3.2.
For v = 488, proceed as follows. Since 126 € RB(6), there isa GD(6,1,6;126).

Give weight O to every point of one group of the GDD and weight 4 to every point
of the other groups and apply “the Fundamental Construction”. We obtain then
a GD(5,1,24;480) of type 2420, Add a set T of 7 new points to it and break up
each group together with T to form a GD(5,1,{3,7};31)such that the group of size
7 is T. This produces a GD(5,1,{3,7};487) of type 3107, Thus the result can
be obtained in the same way as we did for v = 34. But, in this case, we take
X = Z40 UY, A is the block set of a (489,9;5,1)-IPBD on X with the hole Y.
A, is the block set obtained from A by replacing the symbol cog by cog, and A,
is the block set of a GD(5,1,{3,7};487) on X \{oog, 009 } which unique group of
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size 7 is Y'\{oog, 009 }. It is easy to show that (X \{oog},¥'\{00s}, A1 U A2)
isa MSD(5,2;488(8)) which implies 488 € M from Lemma 2.1 and 3.2. This
completes the proof.

In the following constructions, we shall use difference sets (see, for example,
[21). Instead of listing all of the blocks of a design, it suffices to give the group G
acting on a set of base block, we shall adapt the notation:

devB= {B+g:Be€Bandg € G}

where B is the collection of base blocks of the design.
Lemma 3.4. {10,12,20,30,40,70} C MSD(2) and {22,32} C M.

Proof: For v = 70, we have y(v) = 476. Take X = Zo. Let B; be the set of
the following block:

{7, j+14, j+21, j+28, j+42} {7, j+7, j+14, j+56, j+63}
{j, j+7, j+21, j+28, j+49} {j+7, j+14, j+21, j+35, j+63}
{j+7, j+28, j+35, j+49, j+56} {j+21, j+35, j+42, j+49, j+63}
{j+14, j+28, j+35, j+42, J+56} {7, j+42, j+49, j+56, j+63}

where j = 0,1,2...6. Let B, be the set of the following blocks:

{0,1,16,20,33}  {0,1,3,26,60}  {0,3,40,46,51}
{0,9,17,29,55}  {0,5,9,27,39}  {0,10,16,18,41}

It is readily checked that (X,{0,35},BiU devB;) isa MSD(5, 2,70(2)).

For the others, we let G be an abelian group and X = G or X = GU({o0} x
Z,). Ttis readily checked that (X,Y, devB) is the required M SD where B are
listed below.

1) v=10, G =24 X 23, Y={oo}><Zg,
B = {{(00,0)(0,0)(0,1)(1,1)(3,0)}}.

10)) v=12, G=27n, Y ={0,6},
B={{0,1,2,5,10}}.

3) v=20, G=2Zy %2, Y = {00} X 2,

B = {{(0,0)(0,0)(0,1)(1,0)(3,1)},
{(8,1)(0,0)(1,0)(3,0)(5,0) }}.

(G} v=22, G=12yn, Y = ¢,
B= {{0,5,11,12,14}, {0,2,6,7,10}}.
(5) v=30, G=2Z14 X2, Y={oo}><Z2,

B = {{(0,0)(0,0)(2,00(0,1)(3, 1)},
{(0,0(4,0(3,1)(8,1)(9, D},
{(0,0(2,1)(7,1)(4,1)(8, 1) }}.
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6) v=32, G=26 X2, Y =¢,

B = {{(0,0)(2,0)(5,0)(0, )(12, 1},
{(0,0)(2,0)(5,0)(1,1)(13, 1)},
{€0,0)(1,0)(7,0)(8,0)(10,1)}}.

)] v=40, G =219 X2, Y={oo}XZ2,

B= {{(00,0)(0,0)(4,0)(4,1)(11,1)},
{(6,00(0,1)(3,1)(1,1)(9,1},
{(13,0)(0, 1) (4,1)(5,1)(11,1) },
{€0,0)(9,0)(2,1)(4,1)(18,1)}}.

4. Constructions using IPBD.

In this section, we shall give some recursive constructions for IPBD so as to
determine the values of D(5,2;v) for v = 1 (mod 2). Our method of construction
will be based upon the following lemmas.

Lemma 4.1. If v=7 or9 (mod 10), then D(5,2;v)< ¢(v) — 1.

Proof: Assume that there exists a SD(5,2;v,%¥(v)). We let r, be the number of
times that point z occurs in the design. Then r, < [2(v —1)/4] = (v —1)/2
for each z. Since v(v — 1) /2 — 5¢(v) = 1, however, there must be one point
which occurs v(v — 1) /2 — 1 times, and all others appear (v — 1) /2 times. Thus
the number of pairs which occur less than twice in the blocks of the packing is 4
(counting multiplicities). This contradicts the fact that 2(v — 1)v/2 — 109(v) =
2. Therefore the conclusion follows.

Lemmad4.2. If v=7 or9 (mod 10), then D(5,2;v)= (v) — 1 provided that
v € IP,(9).

Proof: Let (X,Y,.A) be a (v,9;5,2)-IPBD. From Lemma 3.1 we can replace the
hole Y with 4(9) — 1 blocks of a packing design of its pairs by quintuples. These
blocks together with all blocks in A form a SD(5,2;v, ¥ (v) — 1) on X. Then the
conclusion holds by Lemma 4.1.

Similarly, we have
Lemma 4.3. If v = 7 or 9 (mod10), then D(5,2;,v)= y(v) — 1 provided
v € IP(7).

Proof: The proof is similar to that above. In this case, we use Lemma 3.1 and
replace the hole with 16(7) — 1 blocks of a packing design of its pairs by quintuples.
Lemma 4.4. If v =3 (mod 10), then D(5,2;,v)= y(v) provided v € IP,(3).
Proof: Simple calculation shows that the number of blocks in a (v,3;5,2)-IPBD is

¥ (v) whenever v = 3 (mod 10). The conclusion then follows from (1.1).

Inview of Lemma 4.2, 4.3, and 4.4, it will be necessary for us to build families
of IPBD. We shall employ some recursive constructions below.
A very powerful recursive construction for IPBD is given as follows.
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Construction 4.5. Let e and m be positive integers satisfying e = 0 (mod m)
and let q > 0. Suppose that the following designs exist:

(1) a(u+e+gqg,e+q; K,)\)-IPBD,
2 a(u+gq,q;K,(m— 1)))-IPBD.

Then there exists a (u + w,w; K, m)\) -IPBD, where w = q + e/m.

Proof: Let X andY be disjoint sets of cardinality u and e+¢, and let (XUY, Y, A)
bea(u+e+gq,e+g; K,)\)-IPBD. Take F C Y such that |F| = ¢ and divide the
points of Y'\ F into e/m groups. We replace the j-th group by single new symbol
0; (1 <j<e/m)andput M = {0 : 1 <j < e/m}. Let A; be aset of blocks
obtained from A by the above replacement. Then all pairs of distinct points of
X UM, notboth in M or X, occur exactly in m) blocks of A1, whereas all others
of X U F, not both in F, occur exactly in A blocks of A;. Now using hypothesis
we form a (u + ¢, ¢; K,(m — 1)A\)-IPBD on X U F with the hole F' and block
set A,. Itis clear that (X U FU M, FU M, A; UA,) is the required IPBD.

Corollary 4.6. Suppose that v = 20n+ 3 where n is a positive integer. Then
v € IP,(3).

Proof: Apply Construction 4.5 with K = {5},u =20n,e=4,A=1,¢g=1and
m = 2. The required IPBDs come from Lemma 2.7.

Corollary 4.7. 47 € IP,(7) and 49 € IP,(9).

Proof: From 40 € RB(4), we have 53 € IP;(13). And the result then follows
by taking K = {S},u =40,A =1,m =2,g+e=13ande = 8 or 12 in
Construction 4.5.

Corollary 4.8. Suppose that v = 20n + 7 where n is a positive integer and
n¥1,2,3,6,8,22,37. Thenv € IP,(7).-

Proof: For these values of n,20n+ 9 € IP,(9) and20n+ 5 € IP;(5). Take
K ={5},u=20n)=1,m=2,9q=5,and e = 4 in Construction 4.5, we
have v € IR, (7).

Next, we start with a GDD to produce another construction for IPBD. The
proof is immediate and omitted here.

Construction 4.9. If there exists a GD(5,2,{t1,t2 ...t };v) and t; + w €
IP(w) for1 < i< n—1, then v+w€ I[Py (t, + w). Moreover, v+w €I P (e)
ifty+ w € IP(e).

As an immediate corollary of Construction 4.9 we have the following useful
constructions.
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Construction 4.10. Let t be an integer satisfyingt = 0 or 2 (mod 5) and t >
5,t#10,30,7,22,42,52. Then 10t + 23+ 1 € IP,(2s + 1), furthermore
10t+2s+ 1€ IP(w) if 2s+ 1 € IP;(w), where 0 < s< t.

Proof: For these values of ¢, there are both TD(6,t) and a (2t + 1,5, 2)-BIBD
by Lemma 2.3 and 2.5. Delete some points and leave s points in a group of a
TD(6,t). Give weight 2 to every point and use “the Fundamental Construction”.
The required ingredient GD(5,2,2;10) and GD(5,2,2;12) come from Lemma 2.4.
Then add one point to the resultant GDD. The conclusion then follows by taking
n=6,t1 =1y =...-=t5 = 2¢,t6 = 2s and w = 1 in Construction 4.9.

Construction 4.11. Let r be a positive integerand 0 < s < r. Then 201+ 4 s+
wE IP,(43+ w) if 47+ w € IP,(w). Moreover,20r + 4s+ w € IP,(e) if
4s+we IP(e).

Proof: From Lemma 2.4 we can know that there exists a GD(6,2,7;6r) for any pos-
itive integer r. Delete some points and leave s points in a group of a GD(6,2,6;67).
Give weight 4 to every point and use “the Fundamental Construction”. We obtain
aGD(5,2,47,45; 207 + 4 3) of type (47)5 (4 s) . The required ingredient GDDs
come from the fact that {21,25} C B(5). Then the conclusion follows from
Construction 4.9

Construction 4.12. Let a,b and v be integers satisfying0 < a < 5,0 < b <
(v—1)/4. Then
(1) 2(v—-6)+2a+1€IP(2a+1)ifve B(6),
2 2v+2b+1 € IR(2b+1) if v e RB(5), furthermore 2v +
2b+ 1 €IP(w) if2b+ 1€ IP(w)

Proof: Noticing that there is a GD(6,1,5,v — 1) of type 5(*-1/5 whenever v €
B(6) andaGD(6,1,5;v+((v—1) /4) —1) of type 5¥/° ((v—1/4) — 1) whenever
v € RB(S), the proof is similar to that of Construction 4.10.

We are now in a position to establish the main result of this section.
Lemma4.13. 110+ g€ IP,(q) if ¢g=3,7 or9.

Proof: In a TD(6,11), we delete 11 — s points in a group and a block of size 5 to
obtain a ({5,6}, 1)-IGDD of type (11,1)3(s, 0)!. Give weight 2 to every point
of the IGDD and use “the Fundamental Construction”. The resulting design is a
(5,2)-IGDD, of type (22,2)°(2s,0)'. Adding a new point to the IGDD, we get
110+ 2s+ 1 € IP,(2s+ 1) by filling in each group of size 22 together with the
new point with a (23, 3; 5, 2)-IPBD and filling in the hole by (11,5, 2)-BIBD.
Take s = 1, 3 or 4 and the result follows.

Lemma 4.14. If v = 3 (mod10),v > 23 and v # 33,73,93, then v €
I1P,(3).
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Proof: By Corollary 4.6 and Lemma 4.13, we need only to show thatv € I P,(3)
forv = 13 (mod20) and v ¥ 13,33,73,93,113. Taket = 10n+ 5 (n >
3),2s+ 1 € {3,23,43,63}andt = 10n+ 7 (n > 3),2s+ 1 = 63 in
Construction 4.10. Since {23,43,63} C IP,(3) from Corollary 4.6, we get
v € IP,(3) forall v > 353. We still make use of Construction 4.10, but taking
t=5,15,17,25,27 and2s+ 1 € {3,23,43}, to obtain {53,153,173, 193, 253,
273,293,313} C IP,. Apply Construction4.11 withr = 14, w =5 and s = 12,
we have 333 € IP,(3). Since 65 € RB(5) and {111,121} C B(6), we get
{133,213,233} C IP,(3). This completes the proof.

Lemma 4.15. If v =7 (mod 10),v > 37 and v # 67, 77, 97, 167, 197, then
v € IP(T)UIP(9)

Proof: We need only consider the exceptions of listed in Lemma 2.7 and Corol-
lary 4.8. By the foregoing, {47,117} C IP (7). {127,137,497} C IP(7)
follows from Construction 4.12, since {65,205} C RB(5),66 € B(6) and
87 € IP,(7). Forv € {57, 157, 277, 397, 447, 557, 577, 6317, 717, 7147, 777,
7917, 897}, apply Construction 4.10 with ¢ € {5, 15, 27, 35, 40, 55, 57, 60, 67, 70,
77},2s+ 1 € {7,37,47,127} .

Lemma 4.16. If v =9 (mod 10),v > 49 and v # 69, 79, 99, 169, 199, 339,
439, then v € IP,(9).

Proof: By Lemma 2.7 we need only consider the case v = 19 (mod20) and
v = 49, 129, 449, 749. It is shown {49,119} C IP>(9) in Lemma 4.13 and
Corollary 4.7. Taking v € {65,205, 305,405} C RB(5),2b+1 € {9,89,109}
andv € {66,111, 121,151,301} C B(6),2a+ 1 =9 in Construction 4.12, we
have {129, 139,219, 239, 299,419, 499, 599, 619,699,719,819} C IP,(9). The
remaining case in the interval 49 < v < 829 are covered by using Construction
410 with t € {5, 15, 17, 25, 27, 35, 37, 40, 45, 47, 55, 57, 65, 67, 70} and
23+ 1 € {9,49, 89, 109, 129}. For v > 839 and v = 19(mod 20), the result
follows from Construction 4.10 in such away thatt = 10n+5 (n>7),2s+1 €
{89,109, 129,149} and t = 10n+ 7 (n > 7),2s+ 1 = 149. This completes the
proof.

Combining Lemmas 4.14, 4.15, and 4.16 with Lemmas 4.2, 4.3, and 4.4,
keeping in mind Lemmas 2.3 and 3.1, we are able to give the main result of this
section. That is

Theorem 4.17. If v> 5,v=1(mod2) and v ¢ F, then

Y(v) —1 ifv=70r9 (mod 10)
Y(v) otherwise .

D(5,2;v)={

Here F = {13,15,17,19,27,29,33,39,67,69,73,77,79,93,97,99,
167,169, 197,199 ,339,439}.
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5. Constructions using M SD

In this section we wish to determine the values of D(5,2; v) forv =0 (mod 2).
Our constructions will mainly involve maximum almost packing design. We need
the following notations:

Mi(w) ={v:v,w=0 or2 (mod 10) and v € MSD(w)};
My(w) = {v:v,w=6 (mod 10) and v € MSD(w)};
Ms(w) = {v:v,w=4 or 8 (mod 10) and v € MSD(w)}.

Here w is a nonnegative integer.

Construction 5.1. Lef t,t2,u1,u2 and w be nonnegative even integers and let
1 < j < 3. Suppose that
(1)  there exists a (5,2)-IGDD of type t; + uy, 1)’ (12 + u2,u2)"
2 ti+u+w€ Mj(vy +w);
(3) t2+uz+we€ MSD(uz +w); and
4 u+w=0o0r2 (mod 10).
Then 5(ty + u1) + t2 + uz + w € MSD(5u; + uz + w). Furthermore, 5(t1 +
u1)+tz+u2+w€M,if5u1+u2+'weM.

Proof: Let (X,Y,{G; : 1 < i < 6},A) be a(5,2)-IGDD of type (1 +
u1,u1)%(t2 + uz,up)!,and let Y NG; = Hifor1 < i < 6. Take aset T of size
w which is disjoint from the point set X. Add T to the IGDD.For1 <1 < 6, we
construct a M SD on G; U T with the hole H; U T by the conditions (2) and (3).
Let corresponding block set be A1 Az - - - Aé-

Itis easy to show that (X UT, AUA; U---U Ag) is the desired M SD with
the hole H; U- - -U Hg UT by counting the number of pairs which occur less than
twice in these blocks. The last conclusion comes from Lemma 2.1. The proof is
complete.

When we start with GDD, we can obtain the following constructions by the
similar way as we did for IPBD. Here we consider M SD instead of IPBD.

Construction 5.2. Let t,,t2, and w be nonnegative even integers. Suppose that
aGD(5,2,{t1,t2};v) of type t*"' t} exists. Then
(1) v+w € MSD(tz+w) if 1 +w € M1(w). Moreover,v+w € M
ift +weM;
(2) ve MSD(t) ift, € M;(0) and t; € M.

Construction 5.3. Let t and s be integers satisfying 0 < s < t. Suppose that a
TD(6,t) exists. Then
(1) 10t+2s+w € MSD(2s+ w) if 2t+ w € M1 (w), moveover,
10t+2s+weMif2s+weM;
(2 10t+2s€ MSD(2t) if 2t € M(0) and 2s € M.

297



Construction 5.4. Suppose that r and s are integers satisfying r > 0 and 0 <
s < r. Then

(1 20r+4s+we MSD(4s+ w) if 4r+ w € My(w), moreover,
20r+4s+weMifds+we M;
(2 20r+4se MSD(4r) if4re€ M1(0) andds e M.

We shall also make use of the following constructions.

Construction 5.5. Let a,b and v be integers satisfying 0 < a < 5,0 < b <
(v—1)/4. Then
(1) 2(v—6)+2a+2 € MSD(2a+2) if ve B(6),
2) 2v+2b+2 € MSD(2b+ 2) if v € RB(5), moreover, 2v +
2b+2 e MIif2b+2 € M;
(3) 2ve M(2) if ve B(5).

Proof: The conslusion (1) and (2) come from Cosntruction 5.2. The verification
of conditions are the same as in Construction 4.12, noticing that 12 € M;(2)
mentioned in Lemma 3.4. For (3) we regard (v, 5, 1)-BIBD as a GD(5,1,1;v) and
give weight 2 to every point of the GDD. This produces a GD(5,2,2;2v) which is
the desired design.

Construction 5.6. If v=0o0r2 ( mod 10),v > 10 and v € M, then Sv—4 €
M.

Proof: By Lemma 2.5 for these values of v there exists a TD(5,u—1). A SD(5,2;5v
—4, ¥(5v—4)) can easily be obtianed by adding a new point to sucha TD(5,v—1)
and forming a SD(5,2;v, ¥(v)) on each group together with the new point.

Next, we use the above constructions to establish our result of this section. As
an aurhority for the existence of the required transversal designs, we use Lemma
2.5. For brevity we shall not mention them then.

Lemma 5.7. Suppose that v is an integer satisfying v > 10 and v=0 or 2
(mod 10). Then v € My (2) if v#22,32,80;and {22,32} C M.

Proof: In view of Lemma 2.2, we need only to show that v € M;(u) such that
v =2 oru € M;(2) for every admissible v.

It has been shown that {22,32} C M and {10,12,20,30,40,70} C
M;(2) in Lemma 3.4,

{42, 82,90, 132, 140, 142, 180, 182, 190, 192}C M, (2) follows from Con-
struction 5.5. Suitable equations are 42 = 2 - 21,82 = 2 . 41,90 = 2 . 45,
132=2.65+2,142=2 .65+ 12,140=2 - 65+ 10,180 = 2(91 —- 6) + 10,
182=2.(91-6) + 12,190=2(96 — 6) + 10,192 =2(96 —6) + 12.

For v €{50, 52, 60, 62, 92, 100, 102, 110, 112, 120, 122, 130, 150, 152, 160,
162,170,172}, wetaket = 5,9, 11,15, 16 in Construction 5.3 and select certain
valuesof 23+ w € {0,2,10,12,20} where w = 0 or 2.
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For v = 72, the result follows from Construction 5.4 with » = 3,5 = 3 and
w=0.

Now we further apply Construction 5.3 recursively foreacht € {n: n=
0 (mod 5) and n > 35}U{20,25,29,31} in such a fashion that 2s+ w € {n:
n=0o0r2 (mod10) and0 < n< 52} and w = 0 or 2. This guarantees that
v € M;(2) wheneverv > 200 andv =0 or2 (mod 10).

Lemma 5.8. If v = 4 (mod 10) and v > 14, then v € M provided v #
44 .84,

Proof: Applying Construction 5.3 foreacht € {n: n=0or1( mod 5) andn >
11,n% 26,30} and 2s+ 0 € {4,14,24,34} covers all cases except v € {54,
64,74,94, 104, 134, 144, 294, 304}. The necessary ingredient { 4, 14,24,34} C
M and 2t € M;(0) come from Lemma 3.2, 3.3 and 5.7. Here we use the fact
that M1(2) C M. Forv = 74, we use Construction 5.2 as follows. In a TD(6,7),
we delete 5 points from one block to produce aGD({5,6},1,{6,7}; 37) of type
637!, Give weight 2 to the GDD and use “the Fundamental Construction”. This
guarantees 74 € M3(14) which implies 74 € M. The remaining values of v can
be taken care of by Construction 5.3-5.5 with the equations 54 = 10 -5+ 2+ 2,
64=20-3+44+0,94=10-9+2+2,104=20-5+4+0,134=2-65+2+2,
144=2-65+2-6+2,294=10-29+2+2,304=10-29+2 -6+ 2.

Lemma 5.9. {328,376,378,388} C M.

Proof: Checking the proof of Lemma 5.8 we have 74 € M3(14). Using Con-
struction 5.3(2) and 5.4 with the parameters (t,s) = (5,3),(5,4) and (7,s) =
(3,1),(3,2),(3,3) and the fact that {4,6, 8,12} C M, we have 56 € M SD(0),
58 € MSD(10), 64 € M;(4), 68 € MSD(12), 72 € M;(12). From
a TD(6,16) we can obtain a (5,2)-IGDD of type (60 + 4,4)(4s + 4¢,4¢)’
satisfying 0 < s < 16 and ¢ = O or 1, which proof is similar to those in
Lemma 4.13. Take pair (s, q) = (2,0),(14,0),(12,0),(14,1) weget4(5,2)-
IGDDs which types are seperately (60 + 4,4)%(8,0)', (60 + 4,4)3(56,0)!,
(60 + 4,4)5(48,0)!, (60 + 4,4)3(60,4)!. Thus the result follows by taking
(t1,u1,t2,u2,w) = (60,4,8,0,0), (60,4,56,0,0), (60.4,48,0,10), (60,4,56,4.8) in
Construction 5.1.

Lemma 5.10. Let v be a positive integer satisfying v = 6,8,16,18,46 or
48 (mod 50). Thenv € M if v # {16,18,48,66}.

Proof: It has been shown that {6,8} C M in Lemma 3.2. Applying Construction
53foreacht € {n:n=0,10r4 (modS) andn > 5,n%6,10,14,26,30,

34,44} such that 2s + w = 6,8 and w = 0 or 2, covers all cases except v €
{46, 68, 106, 108, 146, 148, 266, 268, 306, 308, 346, 348, 446, 448} . The
conditions 2t € M;(0) or 2t + 2 € M;(2) come from Lemma 5.7. Since {76,
136, 156}C B(6), we can use Construction 5.5 to show that {146, 148, 266, 268,
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306, 308}C M. For v € {46,106}, apply Construction 5.6 with the equations
46 = 5-10 — 4,106 = 5 - 22 — 4. The remaining values of v are covered
by Construction 5.3 and 5.4 with the equations 346 = 10 - 29 + 2 - 27 + 2,
348=10-29+2 -28+2,446=10-39+2-27+2,448=10-39+2-28+2,
68=20-3+4-2+0,108=20-5+4-2+0.

Lemma5.11. If v=6 or8 (mod 10),v > 6 and v ¢ H, then v € M. Where
H = {16,18,26,28,36,38,48,66,76,78,86,88,226,228,236,238,276,
278,288,326,338,438,526} .

Proof: From our previous results in Lemma 3.3, 5.9 and 5.10, we need only con-
sider the case v = 26,28,36,38 (mod 50) and v # 328, 376, 378, 388, 488.

For v € {126, 128, 136, 138, 176, 178, 186, 188, 426, 428, 476, 478, 536,
538} , Construction 5.5 gives us the required result because of { 66, 91, 96, 216,
241,271}C B(6) and 65 € RB(5).

For v € {386,486 }, the result can be obtained by taking r = 17,22, w = 2
and 4 s + w = 46 in Construction 5.4.

For v € {676,678}, proceed as follows. First we use Construction 5.3 and
the equation 130 = 10 - 11+ 2 - 10+ 0 to obtain 130 € M;(20). Then we further
make use of Construction 5.3 witht = 55,5 = 53,54 and w = 20.

For v € {576,626 }, proceed as follows. We can easily show that there is a
(331, 6, 1)-BIBD with a flat of order 66, since 66 € B(6). This implies that there
is a GD(6,1,{5,65} ;330) of type 55365 . Delete 65 — s points from the group of
size 65 of sucha GDD and give weight 2 to the resultant design. “The Fundamental
Construction” gives us a GD(5,2,{10,25};530+2s) of type 1053(2s)!. Then the
result follows from Construction 5.2 by taking ¢t; = 10,%; = 2s = 46,96 and
n=54.

For v € {586, 588, 636, 638, 686, 688, 736, 738, 786, 788}, the result
follows from Construction 5.3 with ¢t € {49, 54,59,64,69} ,w =2 and2s+w =
96,98.

For all admissible others for v < 788, the result can be obtained using Con-
struction 5.3 and values of already determined. Suitable equations are 286 =
10-24+2.22+2,336=10-29+2.22+2,436=10-39+2 -22+2,
528=10-46+2-34+0,578=10-51+2-34+0,628=10-56+2 -34+0,
726=10-61+2 -58+0,728=10-61+2-59+0,776=10-65+2-63+0,
778=10-65+2 -64+0.

Finally, the case of v > 826 can be covered by applying Construction 5.3
foreacht € {n : n = 0 (modS5S) and n > 70} such that w = 0 and 2s €
{126, 128,136,138 }. The proof is complete.

Combining Lemma 5.7, 5.8 and 5.11 with (1.1), we establish the main theo-
rem of this section.

Theorem 5.12. If v = 0 (mod2),v > 6 and v ¢ H U {44,80,84}, then
D(5,2;v) = ¥(v), where H as mentioned in Lemma 5.11.

300



6. Proof of Theorem 1.1.
The conclusion follows immediately from Theorem 4.17 and 5.12.
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