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Abstract. Let G be a graph and let D; (G) denote the set of vertices of degree one
in G. In [1], Behocine, Clark, K6hler and Veldman conjectured that for a connected
simple graph G of nvertices, if G — D, (G) is 2-edged-connected, and if for any edge
zy € E(G),d(z) + d(y) > 42 — 2, then L(G) is hamiltonian.

In this note, we shall show that the conjecture above holds for a class of graphs that
includes the K 3 -free graphs, and we shall also characterize the extremal graphs.

I Introduction

We shall use the notation of Bondy and Murty [2] except for contraction and edge
graphs. We assume that graphs have no loops, but multiple edges are allowed. Let
G be a graph. We shall speak of the line graph of G, denoted by L(G), instead
of the edge graph of G. An eulerian subgraph H of G is a connected subgraph of
@G, each of whose vertices has even degree in H. Thus the graph K is regarded
as being an eulerian graph. Let K be a graph. A graph G is said to be K-free if
@G does not have induced subgraphs isomorphic to K. Let N denote the set of
positive integers. For n € N, the n-cycle is denoted by C,.
For a graph G, we denote

Di(@) ={veV(Q) : dega(v) = 1}.

For any graph G and any edge e € E(G), we denote by G/ e the graph obtained
from G by contracting e and by deleting any resulting loops. If H is a connected
subgraph of G, then G/ H denotes the graph obtained by contracting all edges of
H and by deleting any resulting loops.

A family of graphs will be called afamily. A family S is said to be closed under
contraction if

G € S,ee E(G) = GJe€S.

For any graph family S closed under contraction, define the kernal of S to be
S° = {H : For all supergraphs G of H,G € S < G/H € S}. 1

Following Catlin [4] , we let SL denote the family of all supereulerian graphs,
that is, graphs with a spanning eulerian subgraph. Catlin proves ([3],[4])

K, ¢ SC°, K3 € SC°. )]
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If a graph G contains no nontrivial subgraphs in SC° , then G s called a reduced

graph.
For a graph G , let E'(G) be defined as follows:

E'(G) = {e € E(G) : eis in no subgraph H of G with H € SL°}. (3)

Catlin showed ([3],[4]) that each component of G— E'(G) is a maximal subgraph
of G thatis in SL°. Let G’ denote the graph obtained from G by contracting each
edge of E(G) — E'(G). Then G' is called the reduction of G. Note that each
vertex of G’ is the image of some maximal subgraph G that is in SL° under the
contraction. A vertex of G is called nontrivial if it is the image of a nontrivial
subgraph of G. A vertex is a trivial vertex of G’ if it is not nontrivial. Catlin
proved:

Theorem A. (Catlin [3],/4]) Let G be a graph. Then
(i) G' is unique;
(ii) GESL & G' € SLC;
(iii) If H is a subgraph of G and H € SL°, thenG € SC < G/H € SC;
(iv) G' is reduced;
(v) IfG is reduced, then G is simple and K -free;
(vi) IfG has 2 edge-disjoint spanning trees, then G € SL°. i

Theorem A is a special case of a more general reduction method of Catlin [4].
We shall also need the following theorem.

Theorem B. (Harary and Nash-Williams [6]) Let G be a connected graph with
at least three edges. Then L(G) is hamiltonian if and only if G has an eulerian
subgraph T such that every edge of G has at least one end in V(T"). i

There are several prior results on eulerian subgraphs in K 3-free graphs.

Theorem C. (Paulraja [1]) Let G be a connected graph having no induced K 3
as a subgraph. If each edge of G is in a cycle of length at most 5, thenG € SL. 1l

The following theorem generalizes Theorem C.

Theorem D. (Catlin and Lai [5]) Let G be a connected graph containing no in-
duced K1 3 as a subgraph, and define E'(G) by (3). If each edge of E'(G) is
contained in a cycle of G of length at most 5, then exactly one of the following
holds:
(@ G e Ssc;
() Ge{Cs,Cs};
(¢) G has a nontivial subgraph H € S L° such that G /H is the union of 4-
cycles whose only common vertex isvy, the vertex of G/ H corresponding
toH. 1
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By (ii) and (iii) of Theorem A, it is easy to see that Theorem C follows from
Theorem D.

Theorem E. (Catlin and Lai [5]) Let G be a connected graph containing no in-
duced K 3 as a subgraph, and define E'(G) by (3). If each edge of E'(G) is in
a cycle of G of length at most 7, then L(Q) is hamiltonian. [ |

Theorem F. (Catlin and Lai [5]) Let G be a connected graph containing no in-
duced K 3 as a subgraph, and define E'(G) by (3). If each edge of E'(G) is in
a cycle of length at most 7 and §(G) > 3, then G € SL. 1

Theorem D, Theorem E and Theorem F are all best possible.
Let G be a graph and let G’ be the reduction of G. Throughout this note we shall
use d(v) and d'(v) to denote the degree of a vertex v in G and in G', respectively.
In [1], Benhocine, Clark, Kohler and Veldman conjectured that if G is a simple
graph of n vertices, n large, and if
(i) G — D1(G) is 2-edge-connected,
(ii) for any edge zy € E(G),

d(m) + dly) > 5 -2, @

then L(@G) is hamiltonian.

In this note, we shall show that the conjecture above holds for a class of graphs
that includes K 3-free graphs and we shall also characterize the extremal graphs.

I1 Main results

If G has no induced K 3 subgraphs, then for any vertex v € V(G), withd(v) >
3, all but at most one of the edges incident with v lie in triangles of G. Note that
by(2), K3 € PL°. We thus let £ be the collection of graphs having the following
property:

For every v € V(G) with d(v) > 3, there is a subgraph of G in SLO that
contains all but at most one of the edges incident with v.

Clearly G € L if G has no induced K3 subgraphs. The complete bipartite
graph K, (n > 2, m > 2), containing induced K 3 subgraphs , are all in L.

Letc = v; v v3v4v; bead-cycle. Let X and Y be disjoint sets of vertices such
that XUY # ¢ and (X UY) NV (C) = ¢. Define a graph (C; X,Y) to be the
graph with vertex set V/(C) UX UY and edge set E(C)U{v2z : z € X}Iu{vay:
yeY}.
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Theorem 1. Let G € L be a connected simple graph of ordern > 46 and letG'
denote the reduction of G. If for any edge zy € E(Q),

d(z) + dw) > 22 -2, ©

then exactly one of the following holds:

(a) G has an edge e such that each component of G — e has an edge.

) G' € {K1,C4,Cs}.

(©) G' = K1, forsome m € N such that if m > 1, then all the vertices of
degree one are trivial, and such that if m = 1, then exactly one vertex of
G is trivial.

(@) G'=(C;X,Y) such that all the vertices in X UY are trivial.

(e) G' — Di(G") = Ky m, for some m > 3, such that at least one of the
divalent vertices of G' — D1(G") is a trivial vertex of G', and such that if
Dy(G") # ¢, then everyv € D1(G") is incident with a vertex of degree
minG'.

(f) G' = K23 andn = Ss, for some integer s > 10, such that the preimage
of each vertex of G' isa K, ora K — e, for somee € E(K,).

Proof: It is easy to check that the conclusions of Theorem 1 are mutually exclu-
sive,

Let G satisfy the hypothesis of Theorem 1 and let G' be the reduction of G.
Recall that we obtain G’ from G by contracting all maximal subgraphs of G in
SL°. Since vertices in D; (G) are maximal subgraphs of G in SL°, we can regard

Di(G) = Di(G). ©)

Suppose that (a) of Theorem 1 fails. Then for any cut-edge e of G, one of the
components of G — e is a K, namely, a vertex in D;(G). Thus we may assume
that

£(G-Diu(Q)) >2,

since otherwise (a) of Theorem 1 holds.

Now G — D1(Q) is 2-edge-connected, and so G’ — D;(G") is either a K; or
2-edge-connected. If &' — D1 (G') = K, then (b) or (c) of Theorem 1 holds. By
the assumption that n > 46, if G' = K3, then exactly one vertex of G is trivial.
Thus we assume that

G' — D1 (@) is 2-edged-connected. )

Let Hy, H,,..., H, be all the maximal subgraphs of G in SL°. We shall use
v;, 1 < 1 < ¢, to denote the vertex in G’ onto which H; is contracted.
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From the way we obtain G, E(G') = E'(G) can be regarded as a subset of
E(G), where E'(G) is defined by (3). By the facts that G € £ and G’ is reduced,
we conclude that, for1 < i <c,

each vertex in V( H;), is incident with at most one edge of E(G"),
unless v; is trivial and the degree of v; in G’ is 2.

®)
Suppose for some i, |V ( H;)| > 1. Since Hj is in SL°, H; contains an edge
zy € E(H;). By (8), we get

|Ne(z) U Ng(y) — V(H)| L 2. ©®)

By (5) and (9), if [V (H;)| > 1, then

1 2n

V(H)| > max{d(z) ~ 1,d(s) ~1}+ 12 5(F =D =3 -1. (0)

If vv; € E(G") with |V (H;)| = 1, then by (5) and (8), we get

V(D12 2 -2~ dw), an

where we also use v; to denote the unique vertex in V ( H;).

We are now in a position to begin our proof. We divide the proof into several
cases.

Case 1 D1(G) = ¢ and |[V(H;)| > 1,foralli € {1,2,...,c}.

Suppose ¢ > 6. By (10),

n26(§-1)=953—6.

It follows that n < 30, contrary to the hypothesis that n > 46. Hencec < 6.
Since &' is 2-edge-connected and has no triangles, G’ has a cycle of length at
least four. Thus G’ must be either Ca, the 4-cycle, or Cs, the 5-cycle, or K3 3.
If G' € {Cs,Cs} , then (b) of Theorem 1 holds. Hence we suppose that G' =
Kj ;. :
Without loss of generality, we may assume that

|[V(Hs)| > |V(Ha)| > [V(H3)| > [V(H2)| > [V(H1)|. (12)
Since G' = K3, we have d'(v;) < 3. Since n > 46, by (10), [V(H1)| >

9.Thus we can find an edge zy € E( H;) such that z is incident with no edges of
E(@).
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If d(z) < 3, then by (5),

3+ d(y) > d(z) + d(y) > 20— 2.

5
It follows that
2n
d(y) > T—S, 13)
and so by (8),
2
V(HD| > d(y) > 5~ -5 (14)

This, together with (12), implies

n> 5(25—"-5) =2n-25.

Thus n < 25. By assumption, n > 46, a contradiction.
Hence we must have d(z) > 4. Since d'(v;) < 3, we can find an edge
zz € E(H,) such that neither z nor z is incident with any edge in E(G').
By (5),
V(HD| > max{d(z), d(2)} +1> <.

By (12), we must have
VO > [V(HD| 2 [V(H) | 2 V)| 2 [V(HD) > 3. (5)

Thus equalities hold everywhere in (15) and so n = 5s for some s € N.

If, for some : € {1,2,3,4,5}, H; # K,, then by (5), H; = K, — e, where
each of the two ends of e is incident with an edge in E'. Hence ( f) of Theorem 1
holds.

Case 2 Di1(Q) = ¢ and |[V(H;)| = 1 forsome i € {1,2,...,c}.

We may assume that |V (H1)| = 1. By D1(G) = ¢, by (6), (7) and (8), v; is
adjacent to exactly two vertices in G/, say vz and v3. By (11),

2
IV(H)| > 5 —4,i=2,3. (16)
Note that (16) can be interpreted as follows:

2
If v; € V(G') with [V(H;)| < ?” — 4, then v; cannot
be adjacent to some v; € V(G') with [V (H;)| = 1.

an
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By (10) and (16),
G' has at most one vertex other than v, , v with nontrivial preimages.  (18)

Forif [V (H;)| > 1,1 € {4,5}, then by (10) and (16),

5
2 n 6n
n> Y IV(H)| > 1+2(—5’1_4)+2(g—1) =5 -9

i=1

It follows that n < 45, contrary to the assumption thatn > 46 . This contradiction
yields (18).

By (18), we let v € V(G') — {v1,v2, v3} be the possible nontrivial vertex of
G

Subcase 2.1 [V(Ha)| > & — 4.

Then since n > 46,¢c < 5. Forifc > 5, then

6
2n 6n
nZZIV(H.’HZ 1+3(?_4)+2= _?_9.

i=1

It follows that n < 45, a contradiction.
With a similar argument, we can see that

By Di(G) = ¢ and (7),
every v; is in a cycle. (20)
By (8), (17), (19) and by the fact that G € L,

each v;, 1 ¢ {2,3,4}, must be adjacent

. 1)
to exactly two vertices of {va,v3,v4 }.

By (20), (21), by the fact that ¢ < 5 and by (iv) and (v) of Theorem A,
G' € {C4,Cs, K2 3}. Recall that vy is of degree 2 in G and is a trivial vertex of
G'. Hence (b) or (e) of Theorem 1 holds.

Subcase 2.2 Eachv; € V(G"), i ¢ {2,3}, satisfies

2
1g|V(H.-)I<?"-4. 22)

By (18), G' has at most one nontrivial vertex other than v, and vs. Thus by
(17) and (22), G' = K3 , for some m > 1.
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If m = 2, then (b) of Theorem 1 holds. If m>2, (¢) of Theorem 1 holds since
v is a trivial vertex.

Case 3 D1(G") # ¢.

Note that (17) is still valid.

By (6), Di1(G) = D:i(G'). We may assume that v; € D;(G') and so
[V(H1)| = 1. Letvy € V(G") withviv2 € E(G'). Thenby (11),

Ve > 2 -3, 4)

Claim 1 V(G") has at most 4 nontrivial vertices.
Suppose, to the contrary, that there are v; € V(G') — D1(G") with [V (Hy)| >
1,i=3,4,5,6. By (10) and (24),

2n 6
n>E|V(H)|>1+——-3+4( -p=5-6. @
i=1 5

It folows that n < 30, a contradiction. Hence the claim.

Claim 2 G' has at most two nontrivial vertices with preimages of order at least
in _4
S .

Suppose, by contradiction, that for i € {3,4},

2
V(H)| > 5 4. 26)
Then by (24) and (26), we have

n>E|V(H)| > 1+(——3) +2(—-_4) - 6_"_ 0, @
1=1
It follows that 46 < n< 50. Let k € N be such that 1 < k<5 andn 45+ k.
Then the right-hand-side of (27) is equal to 44 + k + g Since |U‘_ V(H))|is
an integer, by (27), V(G) = U,= V(H;),and so G' — di(G") has exactly three
vertices. By (7), G' — D1 (G') must be nontrivial and collapsible, contrary to (iv)
of Theorem A. Hence Claim 2.

If v, is the only nontrivial vertex satisfying (26) in G', then by (iv) and (v) of
Theorem A, by (17) and by Claim 1, G' — D1 (G") is a 4-cycle and all the trivial
vertices are adjacent to v, . Thus by (vi) and (v) of Theorem A, (d) of Theorem 1
holds with Y # ¢.

If &' has exactly two nontrivial vertices satisfying (26), say v, and v4 , then G’
has at most three nontrivial vertices. For otherwise, we may assume that v3 and
vs are also nontivial, and so by (10) and (24),

S
2"1 2"1 n 6n
n> Y IVE 2 1+ (G =)+ (5 -H+2Ag-D="5-8.

i=1
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It follows that n < 40, contrary to the assumption that n > 46.

Hence by Claim 2 and (17), every vertex of G' — D;(G') is adjacent to both
v, and vs, and so by (v) of Theorem A, G' — D1(G") = K2 y, forsome m > 2.
Thus either (d) (when m = 2) or (¢) (when m > 2) of Theorem 1 holds. §

The bound n > 46 is best possible. Let G, G2 and G3 be three copies of K14
and let v, v and v3 be three vertices disjoint from V(G1) U V(G2) UV (G3).
Fori € {1,2,3},let z;, y; € V(G;) be two distinct vertices. Obtain a graph G
such that

V(G) = V(G1) UV(G2) UV(G3) U{v1,v2,13}

and
E(G) = E(G1) U E(G2) U E(G3) U{z1v1,v1y2,T2v2,v243, T3v3,v3 41 }.

Then [V(G)| = 45 and for any edge zy € E(G)

d(z) + dly) 2 16= ZV(Q)| - 2.

But G does not satisfy any conclusion of Theorem 1.

Corollary 2. LetG € L be a connected simple graph of n > 46 vertices and let
@' denote the reduction of G. If for any edge xy € E(QG),

d(x) + dy) > 2 -2, ©

then exactly one of the following holds:

(a) G has a cut-edge e such that each component of G — e has an edge.

(b) L(QG) is hamiltonian.

() G' = K33 andn = 5s, for some integer s > 10, such that the preimage
of each vertex of G' isaK, oraK, — e, for somee € E(K,).

Proof: Clearly (a) of Theorem 1 implies (a) of Corollary 2, and (f) of Theorem 1
implies (c) of Corollary 2. By (ii) of Theorem A, each of (b), (c), (d), and (e) of
Theorem 1 implies that G has an eulerian subgraph I" such that every edge of G
has at least one end in V(I"). Hence by Theorem B, (b) of Corollary 2 follows
from Theorem 1. §
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