Eulerian subgraphs in a class of graphs

Hong-Jian Lai

Department of Mathematics West Virginia University Morgantown, WV 26506

Abstract. Let G be a graph and let $D_1(G)$ denote the set of vertices of degree one in G. In [1], Behocine, Clark, Köhler and Veldman conjectured that for a connected simple graph G of n vertices, if $G - D_1(G)$ is 2-edged-connected, and if for any edge $xy \in E(G)$, $d(x) + d(y) > \frac{2\pi}{3} - 2$, then L(G) is hamiltonian.

In this note, we shall show that the conjecture above holds for a class of graphs that includes the $K_{1,3}$ -free graphs, and we shall also characterize the extremal graphs.

I Introduction

We shall use the notation of Bondy and Murty [2] except for contraction and edge graphs. We assume that graphs have no loops, but multiple edges are allowed. Let G be a graph. We shall speak of the line graph of G, denoted by L(G), instead of the edge graph of G. An eulerian subgraph H of G is a connected subgraph of G, each of whose vertices has even degree in H. Thus the graph K_1 is regarded as being an eulerian graph. Let K be a graph. A graph G is said to be K-free if G does not have induced subgraphs isomorphic to K. Let $\mathbb N$ denote the set of positive integers. For $n \in \mathbb N$, the n-cycle is denoted by C_n .

For a graph G, we denote

$$D_1(G) = \{v \in V(G) : deg_G(v) = 1\}.$$

For any graph G and any edge $e \in E(G)$, we denote by G/e the graph obtained from G by contracting e and by deleting any resulting loops. If H is a connected subgraph of G, then G/H denotes the graph obtained by contracting all edges of H and by deleting any resulting loops.

A family of graphs will be called a family. A family S is said to be closed under contraction if

$$G \in \mathcal{S}, e \in E(G) \Rightarrow G/e \in \mathcal{S}.$$

For any graph family S closed under contraction, define the kernal of S to be

$$S^0 = \{H : \text{For all supergraphs } G \text{ of } H, G \in S \Leftrightarrow G/H \in S\}.$$
 (1)

Following Catlin [4], we let SL denote the family of all supereulerian graphs, that is, graphs with a spanning eulerian subgraph. Catlin proves ([3],[4])

$$K_2 \notin \mathcal{SL}^0, K_3 \in \mathcal{SL}^0.$$
 (2)

Typeset by AMS-TEX

If a graph G contains no nontrivial subgraphs in \mathcal{SL}^0 , then G is called a *reduced* graph.

For a graph G, let E'(G) be defined as follows:

$$E'(G) = \{e \in E(G) : e \text{ is in no subgraph } H \text{ of } G \text{ with } H \in \mathcal{SL}^0\}.$$
 (3)

Catlin showed ([3],[4]) that each component of G-E'(G) is a maximal subgraph of G that is in SL^0 . Let G' denote the graph obtained from G by contracting each edge of E(G)-E'(G). Then G' is called the *reduction* of G. Note that each vertex of G' is the image of some maximal subgraph G that is in SL^0 under the contraction. A vertex of G' is called *nontrivial* if it is the image of a nontrivial subgraph of G. A vertex is a *trivial* vertex of G' if it is not nontrivial. Catlin proved:

Theorem A. (Catlin [3],[4]) Let G be a graph. Then

- (i) G' is unique;
- (ii) $G \in SL \Leftrightarrow G' \in SL$:
- (iii) If H is a subgraph of G and $H \in SL^0$, then $G \in SL \Leftrightarrow G/H \in SL$;
- (iv) G' is reduced;
- (v) If G is reduced, then G is simple and K₃-free;
- (vi) If G has 2 edge-disjoint spanning trees, then $G \in SL^0$.

Theorem A is a special case of a more general reduction method of Catlin [4]. We shall also need the following theorem.

Theorem B. (Harary and Nash-Williams [6]) Let G be a connected graph with at least three edges. Then L(G) is hamiltonian if and only if G has an eulerian subgraph Γ such that every edge of G has at least one end in $V(\Gamma)$.

There are several prior results on eulerian subgraphs in $K_{1,3}$ -free graphs.

Theorem C. (Paulraja [7]) Let G be a connected graph having no induced $K_{1,3}$ as a subgraph. If each edge of G is in a cycle of length at most 5, then $G \in \mathcal{SL}$.

The following theorem generalizes Theorem C.

Theorem D. (Catlin and Lai [5]) Let G be a connected graph containing no induced $K_{1,3}$ as a subgraph, and define E'(G) by (3). If each edge of E'(G) is contained in a cycle of G of length at most 5, then exactly one of the following holds:

- (a) $G \in \mathcal{SL}^0$;
- (b) $G \in \{C_4, C_5\};$
- (c) G has a nontivial subgraph $H \in SL^0$ such that G/H is the union of 4-cycles whose only common vertex is v_H , the vertex of G/H corresponding to H.

By (ii) and (iii) of Theorem A, it is easy to see that Theorem C follows from Theorem D.

Theorem E. (Catlin and Lai [5]) Let G be a connected graph containing no induced $K_{1,3}$ as a subgraph, and define E'(G) by (3). If each edge of E'(G) is in a cycle of G of length at most 7, then L(G) is hamiltonian.

Theorem F. (Catlin and Lai [5]) Let G be a connected graph containing no induced $K_{1,3}$ as a subgraph, and define E'(G) by (3). If each edge of E'(G) is in a cycle of length at most 7 and $\delta(G) \geq 3$, then $G \in \mathcal{SL}$.

Theorem D, Theorem E and Theorem F are all best possible.

Let G be a graph and let G' be the reduction of G. Throughout this note we shall use d(v) and d'(v) to denote the degree of a vertex v in G and in G', respectively.

In [1], Benhocine, Clark, Köhler and Veldman conjectured that if G is a simple graph of n vertices, n large, and if

- (i) $G D_1(G)$ is 2-edge-connected,
- (ii) for any edge $xy \in E(G)$,

$$d(x) + d(y) > \frac{2n}{5} - 2, \tag{4}$$

then L(G) is hamiltonian.

In this note, we shall show that the conjecture above holds for a class of graphs that includes $K_{1,3}$ -free graphs and we shall also characterize the extremal graphs.

II Main results

If G has no induced $K_{1,3}$ subgraphs, then for any vertex $v \in V(G)$, with $d(v) \ge 3$, all but at most one of the edges incident with v lie in triangles of G. Note that by (2), $K_3 \in \mathcal{PL}^0$. We thus let \mathcal{L} be the collection of graphs having the following property:

For every $v \in V(G)$ with $d(v) \ge 3$, there is a subgraph of G in SL^0 that contains all but at most one of the edges incident with v.

Clearly $G \in \mathcal{L}$ if G has no induced $K_{1,3}$ subgraphs. The complete bipartite graph $K_{n,m}$ (n > 2, m > 2), containing induced $K_{1,3}$ subgraphs, are all in \mathcal{L} .

Let $c = v_1 v_2 v_3 v_4 v_1$ be a 4-cycle. Let X and Y be disjoint sets of vertices such that $X \cup Y \neq \phi$ and $(X \cup Y) \cap V(C) = \phi$. Define a graph (C; X, Y) to be the graph with vertex set $V(C) \cup X \cup Y$ and edge set $E(C) \cup \{v_2 x : x \in X\} \cup \{v_4 y : y \in Y\}$.

Theorem 1. Let $G \in \mathcal{L}$ be a connected simple graph of order $n \geq 46$ and let G' denote the reduction of G. If for any edge $xy \in E(G)$,

$$d(x) + d(y) \ge \frac{2n}{5} - 2, \tag{5}$$

then exactly one of the following holds:

- (a) G has an edge e such that each component of G e has an edge.
- (b) $G' \in \{K_1, C_4, C_5\}.$
- (c) $G' = K_{1,m}$, for some $m \in \mathbb{N}$ such that if m > 1, then all the vertices of degree one are trivial, and such that if m = 1, then exactly one vertex of G' is trivial.
- (d) G' = (C; X, Y) such that all the vertices in $X \cup Y$ are trivial.
- (e) $G' D_1(G') = K_{2,m}$, for some $m \ge 3$, such that at least one of the divalent vertices of $G' D_1(G')$ is a trivial vertex of G', and such that if $D_1(G') \ne \phi$, then every $v \in D_1(G')$ is incident with a vertex of degree m in G'.
- (f) $G' = K_{2,3}$ and n = 5s, for some integer $s \ge 10$, such that the preimage of each vertex of G' is a K_s or a $K_s e$, for some $e \in E(K_s)$.

Proof: It is easy to check that the conclusions of Theorem 1 are mutually exclusive.

Let G satisfy the hypothesis of Theorem 1 and let G' be the reduction of G. Recall that we obtain G' from G by contracting all maximal subgraphs of G in SL^0 . Since vertices in $D_1(G)$ are maximal subgraphs of G in SL^0 , we can regard

$$D_1(G) = D_1(G').$$
 (6)

Suppose that (a) of Theorem 1 fails. Then for any cut-edge e of G, one of the components of G - e is a K_1 , namely, a vertex in $D_1(G)$. Thus we may assume that

$$\kappa'(G-D_1(G))\geq 2$$
,

since otherwise (a) of Theorem 1 holds.

Now $G - D_1(G)$ is 2-edge-connected, and so $G' - D_1(G')$ is either a K_1 or 2-edge-connected. If $G' - D_1(G') = K_1$, then (b) or (c) of Theorem 1 holds. By the assumption that $n \ge 46$, if $G' = K_2$, then exactly one vertex of G' is trivial. Thus we assume that

$$G' - D_1(G')$$
 is 2-edged-connected. (7)

Let H_1, H_2, \ldots, H_c be all the maximal subgraphs of G in \mathcal{SL}^0 . We shall use $v_i, 1 \le i \le c$, to denote the vertex in G' onto which H_i is contracted.

From the way we obtain G', E(G') = E'(G) can be regarded as a subset of E(G), where E'(G) is defined by (3). By the facts that $G \in \mathcal{L}$ and G' is reduced, we conclude that, for $1 \le i \le c$,

each vertex in
$$V(H_i)$$
, is incident with at most one edge of $E(G')$, unless v_i is trivial and the degree of v_i in G' is 2. (8)

Suppose for some i, $|V(H_i)| > 1$. Since H_i is in SL^0 , H_i contains an edge $xy \in E(H_i)$. By (8), we get

$$|N_G(x) \cup N_g(y) - V(H_i)| \le 2. \tag{9}$$

By (5) and (9), if $|V(H_i)| > 1$, then

$$|V(H_i)| \ge \max\{d(x) - 1, d(y) - 1\} + 1 \ge \frac{1}{2}(\frac{2n}{5} - 2) = \frac{n}{5} - 1.$$
 (10)

If $v_i v_j \in E(G')$ with $|V(H_i)| = 1$, then by (5) and (8), we get

$$|V(H_j)| \ge \frac{2n}{5} - 2 - d(v_i),$$
 (11)

where we also use v_i to denote the unique vertex in $V(H_i)$.

We are now in a position to begin our proof. We divide the proof into several cases.

Case 1 $D_1(G) = \phi$ and $|V(H_i)| > 1$, for all $i \in \{1, 2, ..., c\}$. Suppose $c \ge 6$. By (10),

$$n \ge 6(\frac{n}{5} - 1) = \frac{6n}{5} - 6$$
.

It follows that $n \le 30$, contrary to the hypothesis that $n \ge 46$. Hence c < 6.

Since G' is 2-edge-connected and has no triangles, G' has a cycle of length at least four. Thus G' must be either C_4 , the 4-cycle, or C_5 , the 5-cycle, or $K_{2,3}$.

If $G' \in \{C_4, C_5\}$, then (b) of Theorem 1 holds. Hence we suppose that $G' = K_{2,3}$.

Without loss of generality, we may assume that

$$|V(H_5)| \ge |V(H_4)| \ge |V(H_3)| \ge |V(H_2)| \ge |V(H_1)|. \tag{12}$$

Since $G' = K_{2,3}$, we have $d'(v_1) \leq 3$. Since $n \geq 46$, by (10), $|V(H_1)| \geq 9$. Thus we can find an edge $xy \in E(H_1)$ such that x is incident with no edges of E(G').

If $d(x) \leq 3$, then by (5),

$$3 + d(y) \ge d(x) + d(y) \ge \frac{2n}{5} - 2.$$

It follows that

$$d(y) \ge \frac{2n}{5} - 5,\tag{13}$$

and so by (8),

$$|V(H_1)| \ge d(y) \ge \frac{2n}{5} - 5.$$
 (14)

This, together with (12), implies

$$n \ge 5(\frac{2n}{5} - 5) = 2n - 25.$$

Thus n < 25. By assumption, n > 46, a contradiction.

Hence we must have $d(x) \ge 4$. Since $d'(v_1) \le 3$, we can find an edge $xz \in E(H_1)$ such that neither x nor z is incident with any edge in E(G'). By (5),

$$|V(H_1)| \ge \max\{d(x), d(z)\} + 1 \ge \frac{n}{5}.$$

By (12), we must have

$$|V(H_5)| \ge |V(H_4)| \ge |V(H_3)| \ge |V(H_2)| \ge |V(H_1)| \ge \frac{n}{5}.$$
 (15)

Thus equalities hold everywhere in (15) and so n = 5s for some $s \in \mathbb{N}$.

If, for some $i \in \{1, 2, 3, 4, 5\}$, $H_i \neq K_s$, then by (5), $H_i = K_s - e$, where each of the two ends of e is incident with an edge in E'. Hence (f) of Theorem 1 holds.

Case 2 $D_1(G) = \phi$ and $|V(H_i)| = 1$ for some $i \in \{1, 2, ..., c\}$.

We may assume that $|V(H_1)| = 1$. By $D_1(G) = \phi$, by (6), (7) and (8), v_1 is adjacent to exactly two vertices in G', say v_2 and v_3 . By (11),

$$|V(H_i)| \ge \frac{2n}{5} - 4, i = 2, 3.$$
 (16)

Note that (16) can be interpreted as follows:

If
$$v_i \in V(G')$$
 with $|V(H_i)| < \frac{2n}{5} - 4$, then v_i cannot be adjacent to some $v_j \in V(G')$ with $|V(H_j)| = 1$.

By (10) and (16),

G' has at most one vertex other than v_2 , v_3 with nontrivial preimages. (18)

For if $|V(H_i)| > 1$, $i \in \{4, 5\}$, then by (10) and (16),

$$n \ge \sum_{i=1}^{5} |V(H_i)| \ge 1 + 2(\frac{2n}{5} - 4) + 2(\frac{n}{5} - 1) = \frac{6n}{5} - 9.$$

It follows that $n \le 45$, contrary to the assumption that $n \ge 46$. This contradiction yields (18).

By (18), we let $v_4 \in V(G') - \{v_1, v_2, v_3\}$ be the possible nontrivial vertex of

Subcase 2.1 $|V(H_4)| \ge \frac{2n}{5} - 4$. Then since $n \ge 46$, $c \le 5$. For if c > 5, then

$$n \ge \sum_{i=1}^{6} |V(H_i)| \ge 1 + 3(\frac{2n}{5} - 4) + 2 = \frac{6n}{5} - 9.$$

It follows that $n \leq 45$, a contradiction.

With a similar argument, we can see that

$$|V(H_i)| = 1, i \notin \{2, 3, 4\}. \tag{19}$$

By $D_1(G) = \phi$ and (7),

every
$$v_i$$
 is in a cycle. (20)

By (8), (17), (19) and by the fact that $G \in \mathcal{L}$,

each
$$v_i$$
, $i \notin \{2, 3, 4\}$, must be adjacent to exactly two vertices of $\{v_2, v_3, v_4\}$. (21)

By (20), (21), by the fact that $c \le 5$ and by (iv) and (v) of Theorem A, $G' \in \{C_4, C_5, K_{2,3}\}$. Recall that v_1 is of degree 2 in G' and is a trivial vertex of G'. Hence (b) or (e) of Theorem 1 holds.

Subcase 2.2 Each $v_1 \in V(G')$, $i \notin \{2,3\}$, satisfies

$$1 \le |V(H_i)| < \frac{2n}{5} - 4. \tag{22}$$

By (18), G' has at most one nontrivial vertex other than v_2 and v_3 . Thus by (17) and (22), $G' = K_{2,m}$ for some m > 1.

If m = 2, then (b) of Theorem 1 holds. If m>2, (e) of Theorem 1 holds since v_1 is a trivial vertex.

Case 3 $D_1(G') \neq \phi$.

Note that (17) is still valid.

By (6), $D_1(G) = D_1(G')$. We may assume that $v_1 \in D_1(G')$ and so $|V(H_1)| = 1$. Let $v_2 \in V(G')$ with $v_1v_2 \in E(G')$. Then by (11),

$$|V(H_2)| \ge \frac{2n}{5} - 3. \tag{24}$$

Claim 1 V(G') has at most 4 nontrivial vertices.

Suppose, to the contrary, that there are $v_i \in V(G') - D_1(G')$ with $|V(H_i)| > 1$, i = 3, 4, 5, 6. By (10) and (24),

$$n \ge \sum_{i=1}^{6} |V(H_i)| \ge 1 + \frac{2n}{5} - 3 + 4(\frac{n}{5} - 1) = \frac{6n}{5} - 6.$$
 (25)

It follows that n < 30, a contradiction. Hence the claim.

Claim 2 G' has at most two nontrivial vertices with preimages of order at least $\frac{2n}{5} - 4$.

Suppose, by contradiction, that for $i \in \{3, 4\}$,

$$|V(H_i)| \ge \frac{2n}{5} - 4.$$
 (26)

Then by (24) and (26), we have

$$n \ge \sum_{i=1}^{4} |V(H_i)| \ge 1 + (\frac{2n}{5} - 3) + 2(\frac{2n}{5} - 4) = \frac{6n}{5} - 10, \quad (27)$$

It follows that $46 \le n \le 50$. Let $k \in \mathbb{N}$ be such that $1 \le k \le 5$ and n = 45 + k. Then the right-hand-side of (27) is equal to $44 + k + \frac{k}{5}$. Since $\left|\bigcup_{i=1}^4 V(H_i)\right|$ is an integer, by (27), $V(G) = \bigcup_{i=1}^4 V(H_i)$, and so $G' - d_1(G')$ has exactly three vertices. By (7), $G' - D_1(G')$ must be nontrivial and collapsible, contrary to (iv) of Theorem A. Hence Claim 2.

If v_2 is the only nontrivial vertex satisfying (26) in G', then by (iv) and (v) of Theorem A, by (17) and by Claim 1, $G' - D_1(G')$ is a 4-cycle and all the trivial vertices are adjacent to v_2 . Thus by (vi) and (v) of Theorem A, (d) of Theorem 1 holds with $Y \neq \phi$.

If G' has exactly two nontrivial vertices satisfying (26), say v_2 and v_4 , then G' has at most three nontrivial vertices. For otherwise, we may assume that v_3 and v_5 are also nontrivial, and so by (10) and (24),

$$n \geq \sum_{i=1}^{5} |V(H_i)| \geq 1 + (\frac{2n}{5} - 3) + (\frac{2n}{5} - 4) + 2(\frac{n}{5} - 1) = \frac{6n}{5} - 8.$$

It follows that n < 40, contrary to the assumption that $n \ge 46$.

Hence by Claim 2 and (17), every vertex of $G' - D_1(G')$ is adjacent to both v_2 and v_4 , and so by (v) of Theorem A, $G' - D_1(G') = K_{2,m}$, for some $m \ge 2$. Thus either (d) (when m = 2) or (e) (when m > 2) of Theorem 1 holds.

The bound $n \ge 46$ is best possible. Let G_1 , G_2 and G_3 be three copies of K_{14} and let v_1 , v_2 and v_3 be three vertices disjoint from $V(G_1) \cup V(G_2) \cup V(G_3)$. For $i \in \{1, 2, 3\}$, let $x_i, y_i \in V(G_i)$ be two distinct vertices. Obtain a graph G such that

$$V(G) = V(G_1) \cup V(G_2) \cup V(G_3) \cup \{v_1, v_2, v_3\}$$

and

$$E(G) = E(G_1) \cup E(G_2) \cup E(G_3) \cup \{x_1v_1, v_1y_2, x_2v_2, v_2y_3, x_3v_3, v_3y_1\}.$$

Then |V(G)| = 45 and for any edge $xy \in E(G)$

$$d(x) + d(y) \ge 16 = \frac{2}{5}|V(G)| - 2.$$

But G does not satisfy any conclusion of Theorem 1.

Corollary 2. Let $G \in \mathcal{L}$ be a connected simple graph of $n \ge 46$ vertices and let G' denote the reduction of G. If for any edge $xy \in E(G)$,

$$d(x) + d(y) \ge \frac{2n}{5} - 2, \tag{5}$$

then exactly one of the following holds:

- (a) G has a cut-edge e such that each component of G e has an edge.
- (b) L(G) is hamiltonian.
- (c) $G' = K_{2,3}$ and n = 5s, for some integer $s \ge 10$, such that the preimage of each vertex of G' is a K_s or a $K_s e$, for some $e \in E(K_s)$.

Proof: Clearly (a) of Theorem 1 implies (a) of Corollary 2, and (f) of Theorem 1 implies (c) of Corollary 2. By (ii) of Theorem A, each of (b), (c), (d), and (e) of Theorem 1 implies that G has an eulerian subgraph Γ such that every edge of G has at least one end in $V(\Gamma)$. Hence by Theorem B, (b) of Corollary 2 follows from Theorem 1.

References

[1] A. Benhocine, L. Clark, N. Köhler, and H. J. Veldman, On circuits and pancyclic line graphs, J. Graph Theory 10 (1986), 411-425.

- [2] J. A. Bondy and U. S. R. Murty, "Graph Theory with applications", American Elsevier, New York, 1976.
- [3] P. A. Catlin, A reduction method to find spanning eulerian subgraphs, J. Graph Theory 12 (1988), 29-44.
- [4] P. A. Catlin, The reduction of graph families closed under contraction. Submitted.
- [5] P. A. Catlin and H. J. Lai, Eulerian subgraphs of graphs with short cycles. to appear in Ars Combinatoria.
- [6] F. Harary and C. St. J. A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Canadian Math. Bull. 8 (1965), 701-710.
- [7] P. Paulraja, On graphs admitting spanning eulerian subgraphs, Ars Combinatoria 24 (1987), 57-65.