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Abstract. Suppose I is a finite multiplicative group and § C I’ satisfies 1 ¢ S and
§-1 = {z~1|z € S} = S. Theabelian Cayley graph G = &(T", 8) isthe simple graph
having vertex set V(G) = I, an abelian group, and edge set E(G) = {z,y}lz 'y €
S}. We prove the following regarding the chromatic index of an abelian Cayley graph
G = G(T', S) : if (S) denotes the subgroup generated by S, then x'(G) = AWG) if
and only if |{S)| is even.

1. Introduction
All graphs considered in this paper are finite and simple.

Suppose throughout I' is a finite multiplicative group and S C T satisfies1 ¢ S
and S-! = {z~!|z € 8} = S. The Cayley graph G = G(T', S) is the simple
graph having vertex set V(G) = I and edge set E(G) = {{z, yHz 'y € S}. If
T is an abelian group, then the Cayley graph is called an abelian Cayley graph.
Every Cayley graph is regular of degree |S].

In this paper we prove that the chromatic index x'(G) of the abelian Cayley
graph G = G(T", S) is A(G) if and only if |{S)] is even. This is accomplished in
Section 3 by analysing, in Section 2, the structure of disconnected abelian Cayley
graphs. This result extends the main result of [5] and the analysis of Section 2 is
based on the corresponding analysis in [3].

2. The Structure of Disconnected Abelian Cayley Graphs

IfT is a group and § C I', then we use the notation (S) to denote the subgroup
of I" generated by S. The same notation is used for induced subgraphs: if G =
(V, E) is a graph and W C V, then (W) denotes the subgraph of G induced by
w.

Proposition 1. If G = G(T', S) is an abelian Cayley graph with Iy = (S), then
the number of components of G is equal to [T |/|T1|.

Proof: Letn=||/|T1]. ThenT = a;T1UazT1U- - -Ua,I' and the components
of G are the subgraphs of G induced by ¢;T1,i=1,2,...,n [}

Proposition 2. Every component of the abelian Cayley graph G = G(T'",S) is
isomorphic to the abelian Cayley graph H = G(T'1, S) where I'y = (S).

Proof: The mapping f : ;1 — Iy defined by f(z) = o7 'z forall z € a;T'y is
an isomorphism between (a;I'1) and H. ]
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Proposition 3. Suppose the abelian Cayley graph G = G(I", S) is connected.
Letg € S,T =S —{g,97'} and 'y = (T). If the abelian Cayley graph H =
G(T",T) is disconnected, then
(a) there is a path in G with exactly one vertex in each component of H
(b) the number of components of H is equal to the smallest positive integer
n such that g" € I'y.

Proof: We start by noting two preliminary facts:
(1) IfgeT,thenT” =TI, and
(2) H is disconnected iffI'; C T".
From these facts we have that I'; C I', and hence g ¢ I'1. Let n(> 2) be the
smallest positive integer such that g € I'1. Thenone can prove thatTy, gI'1, g n,
g™ ! T forms a partition of I". By the proof of Proposition 1, it follows that
the components of H are the subgraphs of H induced by ¢'I'; fori = 0,1,..
—1. Clearly, 1,g,g?%,...,g™! is a path in G with exactly one vertex in each
component of H, while the number of components of H is equal to the smallest
positive integer n such that g™ € I'y. | |
We are now in a position to obtain a picture of the structure of a connected
abelian Cayley graph G = G(T', S) of which the abelian Cayley graph H =
G(T",T) is disconnected, where T = S — {g,g“}. IfI; = (T), then H; =
H(g'T}) are the components of Hi=0,1,...,n— 1, where n s the smallest
positive integer such that g® € I';. The mappmg f, I' — T defined by fy(z) =
gz for each € T is an automorphism of G that maps the vertex set ¢'T of each
H; to the vertex set g**' Ty of Hy,1,i=0,...,n—2. This automorphism also has
the property that each vertex = of G is adjacent to its image f,(z) in the abelian
Cayley graph G.

3. The Chromatic Index of an Abelian Cayley Graph

We now determine the chromatic index of an abelian Cayley graph. In addition to
the usual notation C,,, n > 3, for the cycle on n vertices we use the (non-standard)
notation C, for the complete graph on two vertices.

Proposition4. Let G = G(T',{g,g'}) beanabelian Cayley graph with |(g)| =
n. Then G consists of |T"|/n disjoint copies of C.

Proof: By Proposition 2, G consists of |I"|/n disjoint copies of the Cayley graph
G({9), {g,9™'}) which is clearly the graph C,. [
Proposition 5. Suppose I is an even order abelian group which is generated by
S ={g1,...,9n}. Then thereis a g € S such that |(g)| is even.

Proof: We first prove that there is an element h € I" with order 2: to see this,
simply remove the identity 1 and all g for which g # g~! from I'. Since |T'| is
even, we eventually arriveatan h € T with h = h~!,ie. 2 = 1.
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We now prove that there is a g € S such that |(g)] is even: Suppose on the
contrary that |(g)] is odd forall g € S. Since h € ' = (S), we have integers
aj,...an suchthath = gi' ...g%. Lett = I1%, |(g;)| which is clearly odd. Then
ht= (g ...g2")* = 1, so that 2, the order of h in T, divides t. Hence t is even,
which is a contradiction. 1

Remark 6. If G, and G, are graphs with V = V(Gy) = V(G2) and G, + G
is the graph with V(G1 + G2) = V and E(G + G2) = E(G1) U E(G2), then
X'(G1+ G2) < X'(G1) + X' (G2). ]

We now state Vizing’s Theorem which appeared in 1964 [6,7]. This result was
later proved independently by Gupta [4].

Theorem 7. If G is a graph with maximum degree A, then either x'(G) = A
orY(G)=A+1. |

The following result is due to Beineke and Wilson (see [1]).

Theorem 8. If G is a regular graph with an odd number of vertices, then x'(G) =
A(G)+1. [ |

As an immediate consequence we have

Corollary 9. If G = G(T",S) is an abelian Cayley graph of odd order, then
X'(@)=A(G) +1. ]

We are now ready to determine the chromatic index of abelian Cayley graphs
in general.

Theorem 10. If G = G(T",S) is a connected abelian Cayley graph of even
order, then x'(@) = A(G).

Proof: If |S] < 2 and G = G(T", S) is a connected abelian Cayley graph of even
order, thenT" = {(g). If |T| = 2, then G = K, sothat x'(G) = 1= A(G). If
IT| > 3, then G is the cycle on || vertices and hence x'(G) = 2= A(G).

To use an inductive proof, let G = G(I", S) be a connected abelian Cayley
graph of even order with |S| > 3 and suppose the result holds for every connected
abelian Cayley graph G(A,T) of even order with |[T'| < |S|. By Proposition 5,
there is a g € S such that [{(g)| is even. Let H = G(I",T), where T = S —
{g,97'}. If H is connected, it follows, by the induction hypothesis, that x'( H) =
A (H). Consider two cases:

Case (i): ¢ = g~'. In this case A(H) = A(G) — 1 and |(g)| = 2. By
Proposition 4, it follows that G(I",{g,g~'}) consists of |I"|/2 disjoint copies
of C; = K3, so that x'(G(T",{g,97'})) = 1. From Remark 6, it follows that
X'(G) = X'(H+G(T,{g,g7'}) < x'(H) + X (G(T,{g,g7'}) = A(H) +
1=A(G) -1+ 1=A(G).
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Case (ii): g # g~!. Inthis case A(H) = A(G) —2 and |(g)| > 4. By Proposi-
tion 4, it follows that G(T", {g,g~"}) consists of |"|/|{g)] disjoint cycles of length
[{g)|, an even number. Hence x'(G(T",{g,9~'})) = 2. From Remark 6, it fol-
lows that x'(G) = X'(H + G(T ,{g,97'})) < X'(H) + x'(G(T ,{g,g7'}) =
A(HY+2=A(GQ) —-2+2=A(G).

By Theorem 7, we have, in both cases, that x'(G) = A(G).

- Now consider the case where H is disconnected: let I'y = (T') and let n be the
number of components of H. By the proof of Proposition 3, the components of
H are the induced subgraphs H; = H{g'T1),i=0,1,...,n— 1. By Proposition
2, each component H;,i = 0,1,...,n— 1, of H is isomorphic to the connected
abelian Cayley graph G(T'y, T). If |I'1| is even we have, by the induction hy-
pothesis, x'(G(I'1,T)) = A(G(I'1,T)), so that x'(H) = A(H). Therefore
x'(G) = A(G), as before.

Consider the case where |T; | is odd. Note that, in this case, nis an even number.
By Corollary 9, we have that x'( Hy) = A(Hp) + 1. Consider any (A (Hp) + 1) -
edge-colouring of Hy. Then there is a colour available at each vertex of Ho. Let
i€{1,2,...,n—1}. Define f : I} — ¢'T’; by f(u) = g*u forevery u € Iy.
Then H is isomorphic to H; under the isomorphism f. Colour the edge {g*u, g*v}
of H; with the same colour used to colour the edge {u, v} of Ho Then the same
colour is available at the vertices g*u of H; and u of Hy. Leti € {0,2,...,n—2}.
Consider the pair { H;, H;.1 ). The colour available at both g*u and g**! u may now
be used to colour all the edges {g*u,g**'u} of G,u € [;. Ifg = g~!, thenn= 2.
Hence G(T",{g}) consists of |I"|/2 disjoint copies of C; = K3, so that in this
case the above colouring colours all of the edges of G(T", {g}). If g # ¢!, then
[{g)| > 4. Hence G(T",{g,9~'}) consists of [I"|/|{g)| disjoint cycles of length
|{g)|, an even number. But then the above colouring colours half of the edges of
G(T',{g,97'}). The other half can then be coloured with an additional colour to
obtain the required A (G)-edge-colouring of G. |

Corollary 11. Let G = G(T", S) be an abelian Cayley graph. Then x'(G) =
A(G) if and only if |(S})| is even.

Proof: Denote the components of G by Go, ...,Gyr-1 where n= |I"|/|(S)|. By
Proposition 2, we have that G; & G((S),S) fori = 0,1,...,n— 1. If|{S)| is
even, then by Theorem 10, x'(G({S),S)) = A(G({S),S)) and hence x'(G) =
A(G). If |{S)| is odd, then x'(G({S), S)) = A(G({S),S)) + 1 by Corollary 9,
so that /(@) = A(G) + 1. i

The chromatic index of the complete graph K, has been determined by several
authors using a variety of methods (see, for example, [2] and [7]). One can also
use Corollary 11 to determine it.

The following result characterizes those abelian Cayley graphs which are 1-
factorable.
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Corollary 12. The abelian Cayley graph G(I", S) is 1-factorable if and only if
[(S)| is even. i

4. Concluding Remarks

In this section the main result of [5] is proven using the results of Section 3.
Let {a1,...,a¢} C Zpsuch that0 < a; < --- < a; < (p+ 1)/2. Denote
{a1,...,ak,—01,...,—ax} by S. The circulant graph Cp(ai,...,ax) denotes
the abelian Cayley graph G(Zy,, S).

Proposition 13. Let d = gcd(a,...,ax,p). Then |(S)| = p/d.

Proof: Since d = gcd(ay,...,ax,p), there are integers oy, ..., ax, ak+1 such
thatd = aja; + -+ - + agag + ap1p and hence d = aja; + - - - + agag(mod p)
and d € (S). Hence {0,d,2d,...,(p/d—1)d} C (S).

Let z € (S). Then there are integers o, ..., ax such that z = aja; + --- +
aiar(mod p) and hence z = aja; + - - - + agax + np for some integer n. Since
d divides a; for 1 < i < k and d divides p, it follows that d divides z, so that
z €{0,d,2d,...,(p/d — 1)d}. Hence (S) C {0,d,2d,...,(p/d—1)d}. 1

Theorem 14. If d=gcd(ay, ..., ak,p), then X' (Cfar, . .., ar) =A(Cya, ..., ar)
if and only if p/d is even. ]
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