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Abstract. In this paper, we prove that for any n > 27363, n = 3 modulo 6, there
exist a pair of orthogonal Steiner triple systems of order n. Further, a pair of orthogonal
Steiner triple systems of order nexist for all n= 3 modulo 6,3 < n< 27363, with at
most 918 possible exceptions. The proof of this result depends mainly on the construc-
tion of pairwise balanced designs having block sizes that are prime powers congruent
to 1 modulo 6, or 15 or 27. Some new examples are also constructed recursively by
using conjugate orthogonal quasigroups.

1. Introduction.

A pairwise balanced design (or PBD) is a pair (X, A), where A is a set of subsets
(called blocks) of X, each of cardinality at least two, such that every unordered
pair of points (i.e. elements of X) is contained in a unique block in A. If v is a
positive integer and K is a set of positive integers, each of which is greater than
or equal to 2, then we say that (X, A) is a (v, K)-PBDif | X| = v,and |[A| € K
for every A € A. We will define B(K) = {v: there exists a (v, K)-PBD} . A set
K is said to be PBD-closed if B(K) = K.

A Steiner triple system of order m, (or STS(n)), can be defined to be an
(n, 3)-PBD. The necessary and sufficient condition for the existence of an STS(n)
is that n = 1 or 3 (modulo 6). Two STS(n) on the same point set, say (X, A) and
(X, B), are said to be orthogonal provided the following properties are satisfied:

) ANB=40
2) if{u,v,w}and{z,y,w}€A,and {u,v, s} and {z,y,t} € B, then
s#t.

Orthogonal STS(n) will be denoted by OSTS(n). OSTS(n) can be used to
construct a Room square of order n (or, equivalently, a pair of orthogonal one-
factorizations of order n+ 1, or a pair of perpendicular Steiner quasigroups of or-
der n). Indeed, OSTS(n) were originally introduced in 1968 by O’Shaughnessy
[14] as a method of constructing Room squares. Although the spectrum of Room
squares was determined in 1975 by Mullin and Wallis [13], the spectrum of or-
thogonal Steiner triple systems remains open.

OSTS(n) are known to exist if n = 1 mod 6 is a prime power (see [8]).
Also, the set OST S={n: there exists OSTS(n) } is PBD-closed (see [5]). If we
define P; 6 to be the set of prime powers congruent to 1 modulo 6, then B( Py ) C
OSTS. In[11] and [22], it was proved thatn € B( P, ¢) (and hence n € OST S)
ifn=1mod6andn > 1927. There remained 31 values of n = 1 mod 6 less than
1927 for which an (n, P; ) -PBD was not constructed, as given in the following
theorem. '
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Theorem 1.1 [11], [22]). If n= 1 modulo 6,n > 1, and n ¢ {55, 115, 145,
205, 235, 253, 265, 295, 319, 355, 391, 415, 445, 451, 493, 649, 655, 667,
685, 697, 745, 781, 799, 805, 1243, 1255, 1315, 1585, 1795, 1819, 1921},
then there is an (n, P, ¢) -PBD.

In Section 6, we construct OSTS(253) and OSTS(685), thus reducing the
number of exceptions for n = 1 modulo 6 to 29.

Much less is known regarding OSTS(») for n = 3 mod 6. The only small
examples of OSTS(n) (i.e. n < 100) known to exist are n = 15 ([4]) and n = 27
([15]). Also, there do not exist OSTS(9) ([9]).

Of course, Wilson’s theory of PBD-closure ([17], [18], and [21]), ensures
that there exists a constant N such that, foralln > N,n € OST S if and only if
n = 1 or 3 modulo 6. However, this theory does not yield any reasonable upper
bounds on N. The main result of this paper is the determination of an upper bound
on the constant N; namely, that N < 27363.

Some new examples of OSTS are also obtained recursively using conjugate
orthogonal quasigroups, which are discussed in Sections 5 and 6. These quasi-
groups seem to be of interest in their own right, and the determination of the spec-
trum remains an open problem.

2. Recursive constructions for PBDs.

In this section, we describe several recursive constructions for PBDs. First, we
need to define some terminology.
A group-divisible design (or GDD), is a triple (X, G, A), which satisfies the
following properties:
1) Gisapartition of X into subsets called groups
2) A is aset of subsets of X (called blocks) such that a group and a
block contain at most one common point
3) every pair of points from distinct groups occurs in a unique block.

The group-type (or type) of a GDD(X, G, A) is the multiset {|G|: G € G}.
We usually use an “exponential” notation to describe group-types: a group-type
19273k .. denotes i occurrences of 1, j occurences of 2, etc. As with PBDs, we
will say that a GDD is a K-GDD if |A| € K forevery A € A.

We often construct PBDs from GDDs by filling in the groups as follows.

Filling in Groups Suppose (X,G, A) is a K-GDD, where K is a PBD-closed
set. If |G| € K forall G € G, then |X| € K. If |G|+ 1 € K forallG € G, then
|X]|+1€K.

A transversal design TD(k,n) is a k-GDD of type =¥, i.e. a GDD with
kmpoints, k groups of size n, and n? blocks of size k. Note that every group
and every block of a transversal design intersect in a point. It is well-known that
a TD(k, n) is equivalent to k — 2 mutually orthogonal Latin squares (MOLS) of
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order n. For a list of lower bounds on the number of MOLS of all orders up to
10000, we refer the reader to Brouwer [3].
We now briefly describe Wilson’s Fundamental Construction for GDDs ([19]).

Fundamental Construction (FC) Suppose (X,G,.A) isaGDD,and letw: X —
- Z*U{0} be any function (we refer to w as aweighting). Forevery z € X, lets(z)
be w(z) “copies” of z. For every A € A, suppose that (Uzeas(z), {s(z):z €
A}, B(A)) is a GDD. Then (Uzex s(z), {Uzegs(z): G € G}, UaeaB(A)) is a
GDD.

The remaining constructions are “product” type constructions. We will de-
scribe a very general type of product construction, but first we need to define the
idea of incomplete designs. Informally, a TD(k,n)— TD(k,m) (an incomplete
transversal design) is a transversal design from which a sub-transversal design is
missing. Formally, a TD(k,n)— TD(k,m) is a quadruple (X,Y,G,.A) which
satisfies the following properties:

1) X isa setof cardinality kn

2) G={Gi:1 < i< n}isapartition of X into k groups of size n

3) YCX,[Y|=km,and|[Y NGi]=m,for1 <i<n

4) A is aset of i — m2 blocks of size k, each of which intersects
each group in a point

5) every pair of points z, y from distinct groups, such that at least one
of z, y is in X\Y', occurs in a unique block of A.

Note that these definitions imply that no block contains two points from Y. Hence,
existence of a TD(k,n)— TD(k, m) and a TD(k, m) implies the existence of a
TD(k,n).

We also need PBDs containing subdesigns, or flats. Let (X,.A) be aPBD. If
a set of points Y C X has the property that, forany A € A, either Y N 4] < 1
or A C Y, then we say that Y is a subdesign or flat of the PBD. The order of the
flatis |Y|. If Y is a flat, then we can delete all blocks A C Y, replacing them by
a single block, Y, and the result is a PBD. Also, any block or point of a PBD is
itself a flat.

However, for the construction we are about to describe, we do not require that
the flat be present: i.e. it can be “missing”. Hence, we define incomplete PBDs,
as follows. An incomplete PBD (or IPBD) is a triple (X, Y,.A), where X is a set
of points, Y C X, and A is a set of blocks which satisfies the properties:

1) foranyAe A,|JANY|<L1

2) any two points z, z, not both in Y, occur in a unique block.
Equivalently, we require that (X, A U {Y'}) be a PBD. We say that (X,Y, A) is
a(v,w,K)-IPBDif | X| = v, [Y| = w, and |4| € K for every A € A. This
is where it is important that we make the distinction between PBDs containing
flats, and incomplete PBDs. It is possible that there can exist a (v, w, K)-IPBD,
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but that there does not exist any (v, K')-PBD containing a flat of order w. For
example, it is easy to construct an (11, 5, 3)-IPBD, but there is no (11,3)-PBD.

The following construction is referred to as the singular indirect product (see,
for example, [7] and [10]).

Singular Indirect Product (SIP) Suppose K is a set of positive integers and
u € K ; suppose v, w, and a are integers such that 0 < a < w < v; and suppose
the following designs exist:

1) aTD(u,v—a)—TD(u,w—a),
2) a(v,w,K)-IPBD, and
3) a(u(w-—a)+a,K)-PBD.

Then there is a (u(v — a) + a, K) -PBD that contains flats of order u and u(w— a)
+a. Hence, in particular, u(v — a) + a € B(K).

If we let w = a in the singular indirect product, we obtain the singular direct
product .

Singular Direct Product (SDP) Suppose K is a set of positive integers andu €
K. Suppose v and w are non-negative integers such that w < v, there exists a
TD(u, v), there is a (v, w, K)-IPBD, and there is a (w, K )-PBD. Then there is
a (u(v — w) + w, K)-PBD that contains flats of order u, v, and w. Hence, in
particular, u(v — w) + w € B(K).

If we further specialize this construction by letting w = 0, we obtain the
direct product .

Direct Product (DP) Suppose K is a set of positive integers and u, v € K. If
there exists a TD(u, v), then there is a (uv, K)-PBD that contains flats of order
u and v. Hence, in particular, uv € B(K).

In order to apply the Singular Indirect Product, we need incomplete transver-
sal designs. We use constructions given in [20] to produce these.

Lemma 2.9. Suppose the following TDs exist: a TD(k,m), a TD(k,m + 1),
anda TD(k+1,t). Supposethat 0 < u < t. Then there existsa TD(k, mt+u)—
TD(k,u).

Lemma 2.10. Suppose the following TDs exist: a TD(k,m), a TD(k,m+ 1), a
TD(k, m+ 2),a TD(k + 2,t), and a TD(k, u). Suppose that 0 <v <t Then
there exists a TD(k, mt + u + v)— TD(k,v).

3. A bound.

In this section, we shall prove that if n = 3 modulo 6 and n > 27363, then there
is an (n, P; ¢ U {15,27})-PBD. In order to apply the singular indirect product
construction, we need some results on incomplete transversal designs.
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Lemma 3.1, If t > 77 and 0 < u < t, then there exists a TD(7,7t + u) —
TD(7,u).

Proof: Since t > 77, a TD(8,t) exists by [3]. There also exist TD(7,7) and
TD(7,8). Apply Lemma 2.9 with m = k = 7 to obtain the desired incomplete
TD. 1

Lemma 3.2. Suppose w = 1 modulo6, w > 1927, and a TD( 15, w) exists.
Then there is an (n, P, U {15})-PBD foralln = 3 modulo6,99w < n <
105w.

Proof: Leta = 1%52=%: then0 < a < w. Weapply SIP withy = 15wandu = 7.
First, there isa TD(7, 15w — a) — TD(7,,w — a) by Lemma 3.1, since 2w > 77.
Next, there is a (15w, w, Py ¢ U {15})-IPBD, since a TD(15, w) exists. Finally,
thereis a (7(w — a) + a, P1 6) -PBD by Theorem 1.1, since 7(w —a) +a > w >
1921 and 7(w — a) + a = 1 modulo 6. The desired PBD is obtained. 1

We can now prove a preliminary bound.

Lemma 3.3. If n= 3 modulo 6 and n > 357093, then there is an (n, P, ¢ U
{15})-PBD.

Proof: If n = 3 modulo 6 and n > 357093 = 99-3607, then there exists w
such that w = 1 modulo 6, w > 3607, and 9w < n < 105w. For such w, a
TD( 15, w) exists by [3]. Apply Lemma 3.2. |

Next, we shall lower the bound of Lemma 3.3 using the following variation
of Lemma 3.2.

Lemma 3.4. Suppose w = 1 modulo 6 and a TD(15,w) exists. Then there is
an (n, P16 U{15})-PBD forall n= 3 modulo 6,98w + 1927 < n< 105w.

Proof: If w < 271, then 98w + 1927 > 105w, so there is nothing to prove.
Hence, assume w > 277. Asin Lemma 3.2, lete = JL}:"ﬂ, and then apply
SIP withv = 15wandu = 7. A TD(7,15w — a)— TD(7,w — a) exists by
Lemma 3.1, since 2w > 77. A (15w, w, P, ¢ U{15})-IPBD is constructed from
aTD( 15, w). Finally, there is a (7(w — a) + a, P; ) -PBD by Theorem 1.1, since
T(w—a) +a=n—98w > 1927 and 7(w — a) + a = 1 modulo 6. [ |

Lemma 3.5. If n = 3 modulo 6 and 57885 < n < 357315, then there is an
(n, Py s U{15})-PBD.

Proof: We apply Lemma 3.4 with w = 571, 589, 601, 619, 643, 661, 679, 703,
727, 757, 787, 811, 847, 883, 925, 967, 1015, 1063, 1117, 1177, 1237, 1303,
1375, 1453, 1537, 1627,1723, 1825, 1927, 2035, 2155, 2281, 2413, 2557, 2707,
2869, 3031, 3211, and 3403. For each w in the above list, a TD(15, w) exists
by [3]. Apply Lemma 3.4. It is easy to see that the resulting intervals leave no
integers in the given range uncovered. For, it suffices to verify the inequality
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98w + 1927 < 105w’ + 6 for each w # 571 in the above list, where w' denotes
the integer in the list preceding w. Hence, we cover all n = 3 modulo 6, where
98-571 + 1927 = 57885 < n< 105-3403 = 357315. 1

Lemma 3.6. If n = 3 modulo 6 and 27369 < n < 57879, then there is an
(n, P16 U{15,27})-PBD.

Proof: These values of n are all obtained from SIP, writing n = 7(v — a) + a.
Given a particular (v, w, P ¢ U {15,27})-IPBD, we can often obtain an interval
of values n by using different values for a. These intervals are listed in Table 3.1.
For each interval, the following information is presented: values v and w for which
a suitable IPBD exists, the resulting interval of values n= 7(v — a) + a which are
obtained from SIP, and the corresponding interval of values 7(w — a) + a. The
following information must be verified.

1) We need TD(7,v — a)— TD(7,w — a). In most cases, (v — a) — (w -
a) = (v—w) = Tt forsomet > 77. In these cases, it is easy to check that
w— a < w < t, whence Lemma 3.1 can be applied. The remaining incomplete
TDs are obtained by Lemma 2.10. We determine an equation v = 7t + u + w,
where 0 < w < t,0 < u < t, and such that a TD(9,¢) and a TD(7, u)
both exist. Such equations are listed in Table 3.2. The existence of a TD(9,1)
and a TD(7, u) can be checked in [3]. Then, a TD(7,v)— TD(7,w) exists by
Lemma 2.10. Moreover, any TD(7,v —a)— TD(7,w — a) exists if 0 < a < w,
by using the equation v —a = 7t + u + (w — o).

2) Weneed a (v, w, P ¢ U{15,27})-IPBD. The examples we use come from the
product constructions. In Table 3.3, we give applications of SDP and SIP. The
remaining examples are all applications of DP, where v = 15w orv = 27w, and
the required TD exists by [3].

3) Weneeda (7(w—a)+a, Py ¢)-PBD.Inmostcases, 7/(w—a)+a =1 modulo 6,
and the required PBDs exist by Theorem 1.1. There are four other values that are
required: 2517,4281, 4293, and 4425. These are obtained from SIP in Table 3.4.

This completes the proof. 1

So, we have proved the following theorem.

Theorem 3.7. If n= 3 modulo 6 and n > 27369, then there is an (n, P, ¢ U
{15,27})-PBD.

Proof: Combine the results in Lemmata 3.3, 3.5 and 3.6. ]

38



Table 3.1

v W 7(v-a)+a 7 (w-a) +a v W 7(v-a)+a 7 (w-a) +a
8271 529 56121 57879 1927 3685 4887 181 33213 33231 271 289
8025 535S 54357 56115 1927 3685 4965 331 33189 33207 751 769
7845 523 53181 54351 1927 3097 4887 181 33183 33183 241 241
7611 457 52005 53175 1927 3097 4965 331 33141 33177 703 739
7485 499 50829 51999 1927 3097 4887 181 33123 33135 181 193
7305 487 49653 50823 1927 3097 4965 331 33111 33117 673 679
7125 475 48477 49647 1927 3097 4851 735 33105 33105 4293 4293
6945 463 47301 48471 1927 3097 4965 331 33099 33099 661 661
6855 457 46713 47295 1927 2509 4851 735 33087 33093 4275 4281
6945 463 46695 46707 1321 1333 4965 331 32937 33081 499 643
6855 457 46611 46689 1825 1903 4707 157 32931 32931 1081 1081
6945 463 46185 46605 811 1231 4965 331 32895 32925 457 487
6855 457 46107 46179 1321 1393 4701 151 32883 32889 1033 1089
6945 463 46077 46101 703 727 4965 331 32859 32877 421 439
6585 439 44949 46071 1927 3049 4695 313 32601 32853 1927 2179
6495 433 44361 44943 1927 2509 4659 7 32595 32595 31 31
6339 361 43773 44355 1927 2509 4695 313 32499 32589 1825 1915
6315 421 43185 43767 1927 2509 4647 97 32493 32493 643 643
6183 229 42999 43179 1321 1501 4695 313 32475 32487 1801 1813
6207 229 42657 42993 811 1147 4641 91 32469 32469 619 619
6135 409 42009 42651 1927 2569 4695 313 32265 32463 1591 1789
6045 403 41421 42003 1927 2509 4611 61 32259 32259 409 409
5955 397 40833 41415 1927 2509 4695 313 31995 32253 1321 1579
6045 403 40815 40827 1321 1333 4605 307 31911 31989 1825 1903
5955 397 40731 40809 1825 1903 4695 313 31485 31905 811 1231
6045 403 40305 40725 811 1231 4605 307 31407 31479 1321 1393
5775 385 39657 40299 1927 2569 4563 169 31257 31401 499 643
5685 379 39069 39651 1927 2509 4605 307 30897 31251 811 1165
5595 373 38481 39063 1927 2509 4413 199 30819 30891 1321 1393
5505 367 37893 38475 1927 2509 4605 307 30789 30813 703 727
5418 361 37305 37887 1927 2509 4401 187 30759 30783 1261 1285
5373 199 37029 37299 811 1081 4395 7 30753 30753 37 37
5505 367 36777 37023 811 1057 4395 181 30747 30747 1249 1249
5415 361 36699 36771 1321 1393 4395 7 30741 30741 25 25
5505 367 36669 36693 703 727 4395 181 30309 3073S 811 1237
5415 361 36639 36663 1261 1285 4335 289 30249 30303 1927 1981
5235 349 36129 36633 1927 2431 4323 7 30243 30243 31 31
5211 193 35937 36123 811 997 4335 289 30147 30237 1825 1915
5133 331 35541 35931 1927 2317 4377 163 29997 30141 499 643
5211 193 35523 35535 397 409 4335 289 29913 29991 1591 1669
5079 277 35439 35517 1825 1903 4377 163 29895 29907 397 409
5235 349 35013 35433 811 1231 4335 289 29643 29889 1321 1567
5001 199 34935 35007 1321 1393 4239 157 29385 29637 811 1063
505S 337 34851 34929 1825 1903 4335 289 29133 29379 811 1057
4989 187 34425 34845 811 1231 4245 283 29055 29127 1321 1393
5055 337 34347 34419 1321 1393 4155 277 28971 29049 1825 1903
4965 331 34263 34341 1825 1903 4245 283 28545 28965 811 1231
5055 337 33837 34257 811 1231 4077 151 28293 28539 811 1057
4887 181 33753 33831 811 889 4155 277 27957 28287 811 1141
4965 331 33699 33747 1261 1309 4065 271 27879 27951 1321 1393
4887 181 33693 33693 751 751 4155 277 27849 27873 703 727
4965 331 33687 33687 1249 1249 4065 271 27819 27843 1261 1285
4887 181 33645 33681 703 739 4077 151 27807 27813 325 331
4965 331 33249 33639 811 1201 4257 645 27801 27801 2517 2517
4887 181 33243 33243 301 301 4065 271 27369 27795 811 1237
4851 735 33237 33237 4425 4425
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Construction of incomplete transversal designs

Table 3.2

Applications of the singular indirect product

v w v—w=Tt+u v w v—w=T7t+u
4077 151 7.559+ 13 4659 7 7.663+ 11
4239 157 7.583+1 4887 181 7.671+9
4323 7 7.615+11 5211 193 7.713+ 27
4395 7 7.625+ 13 5373 199 7.739+ 1
4563 169 7.625+ 19 6183 229 7.849+ 11

Table 3.3

v=T(v —da') +d w' | PBD with flat ITD Nw' —d')+a w
4257 = 7(645 — 43) + 43 | 43 | 645=15.43 602 sub 0 43 645
4323 =7(645 —32) +32 | 43 | 645=15.43 613=17.86+11 109 7
4377 =7(645 —23) +23 [ 43 | 645=15.43 622 =17.86+20 163 163
4395 = 7(645 — 20) + 20 | 43 | 645=15.43 625=17.86+23 181 181,7
4401 = 7(645 — 19) + 19 | 43 | 645=15.43 626 =7.86 + 24 187 187
4413 = 7(645 — 17) + 17 [ 43 | 645=15.43 628 = 7.86 + 26 199 199
4611 =7(675 —19) + 19 [ 25 | 675=25.27 | 656=7.89+27+6 61 61
4641 ="T(675 — 14) + 14 | 25 [ 675=2527 | 661 =7.89+27+ 11 91 91
4647 ="7(675 —13) +13 |25 | 675=25.27 |662=7.89+27+ 12 97 97
4659 =7(675 —11) + 11 [25 [ 675=2527 |664=7.89+27+ 14 109 7
4701 =7(675 —4)+4 |25 (675=2527 |671=7.89+27+21 151 151
4707=7(675 =3)+3 |25 ]675=2527 |672=7.89+27+22 157 157
4851 =7(735 — 49) + 49 | 49 | 735=15.49 686 sub 0 49 735
4989 = 7(735 — 26) + 26 | 49 | 735=15.49 709 =7.98+23 187 187
5001 = 7(735 — 24) +24 | 49 | 735=15.49 711=7.98+25 199 199
5079 = 7(735 — 11) + 11 | 49 [ 735=15.49 724 =798+ 38 277 271
5133=7(735 —2)+2 |49 | 735=15.49 733 = 7.98 + 47 331 331
6207 = 7(915 — 33) + 33 [ 61 | 915=15.61 882=7.122+28 229 229
6339 =7(915 —11) + 11 |61 [915=15.61 904=7.122+ 50 361 361
7611 =7(1095 —9)+9 |73 | 1095=15.73 | 1086 = 7.146 + 64 457 457
8271 ="7(1185 —4) +4 |79 | 1185=15.79 | 1181=7.158+75 529 529

Table 3.4
Applications of the singular indirect product
v=7(v -d)+d w' | PBD with flat ITD T(w' —a')+d'
2517=7(375—-18)+ 18 | 25 | 375=1525 | 35T=7.49+7+7 67
4281 = 7(645 —39) + 39 | 43 | 645=15.43 606 =7.86 + 4 67
4293 =7(645 —37) + 37 | 43 | 645=15.43 608 =7.86+6 79
4425 =7(645 —15) + 15 | 43 | 645=15.43 630 =7.86+ 28 211
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4, Values below 27369.

It remains to consider the existence of (n, P1 ¢ U {15,27})-PBDs forn = 3
modulo 6, n < 27363. These values are handled as follows. In Appendix 1,
we present a table of intervals, which cover all but 1370 orders by applying the
singular indirect product as in Section 3. Of these 1370 orders, we construct PBDs
for 84 of them in this section. In Appendix 2, further applications of SIP are
presented, using equations of the form n = 7(w — a) + a. There remain1039
orders for which PBDs are not constructed, which are given in Appendix 3.

In order to save space, we do not include all the details regarding these con-
structions, but we do indicate the values of v, w, and a used. The reader should
have no difficulty in finding constructions for the necessary incomplete TDs, us-
ing the same methods as in Section 3. Any PBDs containing flats which are used
recursively will have previously been constructed.

Lemma 4.1. There is an (n,P1 ¢ U {15,27})-PBD if n € {189, 285, 351,
375, 405, 465, 513, 555, 645, 675, 729, 735, 837, 915, 999, 1005, 1095,
1161, 1185, 1455, 1545, 1635,1647, 1809, 1815, 2085, 2133, 2265, 2355,
2715, 2781, 2835, 2895, 2943, 2985, 3267, 3345, 3429, 3435, 3615, 4065,
4077, 4155, 4239, 4245, 4563, 4605, 4695, 5211, 5235, 5373, 5415, 5505,
5595, 5955, 6021, 6183, 6495, 6507, 6585, 7125, 7215, 7749, 8565, 8655,
8835,9285, 9375, 9423, 9465, 10545, 11535 }.

Proof: These are all applications of the direct product. Each value of n can be
written as n= 7v, n= 15v or n= 27 v for suitable v. |

Lemma 4.2. There is an (n, P1 ¢ U {15,27})-PBD if n= 2835, 5265, 5625
or 10935,

Proof: A {7}-GDD of type 3'5 was constructed in [1]. If there is a TD(7,m),
then we can give every point weight m and apply the fundamental construction,
obtaining a {7 }-GDD of type (3m) 3. I, further, there is a (3m, P1 U{15,27})-
PBD, then there is a (45m, P, ¢ U {15,27})-PBD. Taking m = 63, 117, 125,
and 243, we construct the stated PBDs by this method. ]

Lemma 4.3. There is an (n, P, ¢ U {15,27})-PBD if n= 1107, 1197, 2367,
5877,7047, 12897, 14067 or 14319.

Proof: These are all applications of SIP, as given below. 1

1107 = 15(85—12) + 12, w=13 | 7047 = 13(555-14) + 14, w=15
1197 = 15(91—12) + 12, w=13 | 12897 = 13(1005—14) + 14, w=15
2367 = 15(169 —12) + 12, w=13 | 14067 = 13(1095—14) + 14, w=15
5877 = 13(465 —14) + 14, w=15 | 14319 = 13(1107-6) + 6, w=7
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Lemma 4.4. There is a (5865,{7,15,27}) -PBD.

Proof: Start with a {7 }-GDD of type 35 [1], give every point weight 130 and
apply the fundamental construction, obtaining a {7 }-GDD of type (390) 1*. Now,
a TD(15,27) gives rise to a (405,15, {15,27})-PBD. Hence, we fill in the
groups of the {7}-GDD of type (390)'°, adjoining 15 new points, to produce
a(5865,{7,15,27})-PBD. 1

There remain 1039 orders n = 3 modulo 6,9 < n < 27363, for which
we have not constructed an (n, Py ¢ U {15,27 })-PBD. These orders are listed in
Appendix 3. There are 121 underlined values in Appendix 3; for these n, we shall
construct OSTS(n) in Section 6.

5. Conjugate orthogonal quasigroups.

The connection between conjugate orthogonal quasigroups and orthogonal Steiner
triple systems has been discussed by Lindner and Mendelsohn in [6]. They also
give some constructions for conjugate orthogonal quasigroups. In this section, we
review the results of [6] and give some improvements.

A quasigroup of order v is a pair (Q, ®), where Q is a set of cardinality v,
and ®: Q x Q — Q is a binary operation such that ¢ ® » = ¢ ® s if and only if
r=s,and r ® ¢ = s® ¢ if and only if r = s. (The operation table of a quasigroup
is a Latin square,, and conversely, any Latin square gives rise to a quasigroup for
which it is the operation table.) The quasigroup (Q, ®) is said to be idempotent
if g® q = ¢ for all ¢ € Q. Two quasigroups of order v, (Q, ®) and (Q, &), are
said to be orthogonal if, for every ordered pair (s,t) € S x S, there is a unique
ordered pair (g,r) suchthatg® r=sandg@® r =t.

Let (Q, ®) be any quasigroup. We define on the set Q six binary operations
®(1,2,3)» ®(1,3,2)>®2,1,3), ®(2.3,1), ®(3,1,2),and ®(3 2,1), as follows: ¢ @ r = s if
and only if

g®u23) r=s, 4®u32 s=r, r®2,13 9= S,
T®231)8=4¢, S®3,1)49=T, 3®aE2,yT=4¢.

These six binary operations all define quasigroups (not necessarily distinct), called
the conjugates of (Q,®). The set of conjugates of (Q,®) is denoted {(Q, ®)).
Two quasigroups, (Q,®) and (Q, ®), are defined to be conjugate orthogonal
quasigroups if any quasigroup in {(Q,®)) is orthogonal to any quasigroup in
((Q,®)). Conjugate orthogonal quasigroups of order v are denoted COQ(v).
Define COQ = {v: there exist COQ(v) }.

Now, itis easy to see that any quasigroup in ((Q, ®)) is idempotentif (Q, ®)
is idempotent. Hence, we also denote two idempotent conjugate orthogonal quasi-
groups of order v by ICOQ(v) and define COQ*= {v: there exist ICOQ(v) }.

The following result was essentially given in [6, Theorem 6 and Corollary 7],
but contained a couple of minor typographical errors. We correct them here.
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Theorem 5.1. If v is a prime power, v # 2,3, 4, 5, or 8, then there exist
ICOQ(v). Further, there exist COQ(v) forv=4,5,and 8.

Proof: Let Q = GF(v). Forany A € Q, X # 0,1, define a quasigroup (Q,®)
by ¢ ® r = Ag+ (1 — \)r. Itis easy to see that (Q, ®)) is idempotent. It is
also easy to see that (Q,®,) and (Q,®,) are orthogonal if x # A, Also, we
observe that any conjugate of (Q,®) is a (Q,®y) for some X' # 0 or 1. Since
[{(Q,®x))] < 6 for any , it follows that there exist ICOQ(v) if12 < v—2,
ie ifv > 13. We now consider v = 13,11,9,and 7. If v = 13 or 11, then
(Q,®2))|=3,andv—-2 -3 > 6,50 there exist ICOQ(13) and ICOQ(11). If
v=9,then|{(Q,®2))|=1,andv—-2-1> 6, so there exist ICOQ(9) . Finally,
if v =7, then |{(Q,®2))] = 3, and |{(Q, ®3))| = 2, so there exists ICOQ(7).

Forv = 4 or 8, |{(Q,®))] = v—2 forany X # 0,1. Define (Q,®) by
q @ r = g+ r. Then, it s easy to verify that |[((Q,®))] = 1, and that (Q,®))
and (Q, ®) are COQ(v). Finally, for v = 5, define (Q,®) byg®r = ¢+ 27,
and define (Q, ®) by ¢ ® r = 4¢ + 4r. Then, we can check that H(Q,®))|=6,
[{(Q,®))| = 1, and that (Q, ®) and (Q, ®) are COQ(5). |

We now mention some recursive constructions for COQ(v) and ICOQ(v).
First, we state direct product and singular direct product constructions without
proof (see, for example, [16]).

Lemma 5.2.
(Direct Product) If there exist COQ(u) and COQ(v), then there exist COQ(uv).
If there exist ICOQ(v) and ICOQ(v), then there exist ICOQ(uv).

(Singular Direct Product) If there exist ICOQ(u), COQ(v) containing sub-
COQ(w) as a subdesign, and COQ(v—w), then there exist COQ(u(v—w)+w).
If there exist ICOQ(u), ICOQ(v) containing sub-ICOQ(w) as a subdesign, and
COQ(v — w), then there exist ICOQ(u(v — w) + w).

Using the direct product construction, the following corollary is immediate.

Corollary 5.3 [6, Corollary 8]. If v has prime power factorization v = 2%3% 59s
..., where az # 1 and a3 # 1, then there exist COQ(v).

We can also use PBD and GDDs to construct conjugate orthogonal quasigroups
recursively. We state the following GDD-construction without proof.

Lemma 5.4. Suppose (X,G,A) isa K-GDD, where K C COQ* and |G| €
COQ forall G € G. Then there exist COQ(|X|). Further, if |G| € COQ* for
all G € G, then there exist ICOQ(|X]).

Proof: This is simply the Bose-Shrikhande-Parker construction (see [2]). 1
Corollary 5.5. The set COQ* is PBD-closed.

Proof: A PBD can be thought of as a GDD where every group has size 1. Apply
Lemma 54. |
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Hence, we can obtain some results on existence of ICOQ(v) by using known
classes of PBDs. In [12], the set B( P;) is investigated, where P; = {v > 7: v is
an odd prime power}. Since P; C COQ* and COQ* is PBD-closed, we have that
B(P) C COQ*. Itis proved in [12] that v € B(Py) if v is odd and v > 2129,
and that there are at most 103 odd values of v, 5 < v < 2129, which are not
members of B( P;). These 103 possible exceptions are those elements in the set

E(P;) = {15, 21, 33, 35, 39, 45, 51, 55, 65, 69, 75, 87, 93, 95, 105, 111, 115,
123, 129, 135, 141, 155, 159, 165, 183, 185, 195, 201, 205, 213, 215, 219, 231,
235, 237, 245, 249, 255, 265, 267, 285, 291, 295, 303, 305, 309, 315, 321, 327,
335, 339, 345, 355, 363, 365, 375, 381, 395, 415, 445, 447, 453, 455, 465, 471,
483, 485, 501, 507, 519, 525, 543, 573, 579, 597, 605, 615, 651, 655, 699, 717,
735, 805, 843, 845, 861, 903, 921, 933, 945, 951, 957, 1047, 1077, 1119, 1227,
1315, 1383, 1515, 1595, 1623, 1795, 2127}.

So, we have proved
Theorem 5.6. If v > 5 isodd and v ¢ E(Py), then there is an ICOQ(v).

We can show that most of the integers in E(P;) are in COQ* or COQ. First,
we eliminate several values by starting with a TD(17,m), deleting some points
from one group, and applying Lemma 5.4.

Lemma 5.7. Suppose there is a TD(17,m), and let 0 < uv < m. If there
exist ICOQ(m) and COQ(u), then there exist COQ(16 m + u). If there exist
ICOQ(m) and ICOQ(u), then there exist ICOQ(16 m + u).

We give several applications of Lemma 5.7 in Table 5.1.

Table 5.1
Applications of Lemma 5.7

265=16.16+9
267=16.16 + 11
285=16.17+ 13
305=16.19+1
315=16.19+ 11
321=16.19+ 17
375=16.23+7
381=16.23+13

445 =16.27+ 13
471=16.29+7
483 =16.29+ 19
507 =16.31+ 11
519=1632+17
525=16.32+13
543 =16.32+ 31
605 = 16 .37 + 13

615=16.37+23
699 =16 .43 + 11
717 =16 .43 + 29
861=16.53+13
945=16 .59 + 1
951=16.59+7
957=16.59+ 13
1047 = 16 .64 + 23

1077 = 16 .64 + 53
1119 = 16 .67 + 47
1227 =16.73 + 59
1315=16.81+ 19
1595=16.97 + 43
1623 = 16.101 + 7
1795 = 16.107 + 83
2127 = 16.131 + 31

Next, we give several applications of the direct product construction to members
of E(Py).
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Lemma 5.8. There exist COQ(v) if v € {35,45, 55, 65,95, 115, 135, 155,
205, 215, 235, 245, 295, 335, 355, 365, 395, 415, 445, 455, 485, 655, 735,
805}.

Proof: Apply Corollary 5.3. |

Finally, we present some further applications of the product constructions in
Table 5.2.

Table 5.2
Product constructions for COQ
equation €eCOQR*? equation € CcOQ*?

69=17(5-1+1 345 =5.69
93=23(5-1)+1 453=113(5-1)+1
105=13(9 -1 +1 yes 465=5.93
129=32(5-1)+1 501 =125(5 -1 +1
165=41(5-1) +1 573=143(5 - 1) + 1
185=23(9 -1 +1 yes 597=149(5 -1 +1
213=53(5-1 +1 651=17.93
237=59(5 -1 +1 845=211(5-1)+1
249=31(9-1)+1 yes 933=233(5-1) +1
309=77(5-1)+1

Combining the above results, we have the following.

Theorem 5.9. Suppose v> 1 is odd. Then there exist COQ(v) if v € {3, 15,
21, 33,39, 51,75, 87, 111, 123, 141, 159, 183, 195, 201, 219, 231, 255, 291,
303, 327, 339, 363,447,579, 843, 903, 921, 1383, 1515 }. Further, there exist
ICOQ(v) if v¢{3,15,21,33,35,39,45,51,55,65,69,75,87,93,95, 111,
115, 123, 129, 135, 141, 155, 159, 165, 183, 195, 201, 205, 213, 215, 219,
231, 235, 237, 245, 255, 291, 295, 303, 309, 327, 335, 339, 345, 355, 363,
365, 395, 415, 447, 453, 455, 465, 485, 501, 573, 579, 597, 651, 655,735,
805, 843, 845,903,921, 933, 1383, 1515}.

For even integers, we only obtain a preliminary bound beyond which COQ(v)
always exist. First, we construct one representative in each congruence class mod-
ulo 32, using the product constructions.
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Table 5.3

equation modulo 32 equation modulo 32
162=23(8 —1) +1 2 4 4
134=19(8 - 1) + 1 6 8 8
330=47(8 - 1) +1 10 4 =411 12
302=43(8-1)+1 14 16 16
50=7(8 -1 +1 18 20=45 20
470=67(8 — 1) +1 22 56 = 8.7 24
218=31(8 - 1) +1 26 28=4.7 28
190=27(8 — 1) +1 30 32 0

We can now prove the following.
Theorem 5.10. Suppose v > 58150 is even. Then there exist COQ(v).

Proof: Observe that 58150 = 16.3605+470. Then, if v > 58150 is even, we can
write v in the form v = 16 m + u, where m is odd, m > 3605,and v € {4, 8, 16,
20, 28, 32, 44, 50, 56,134, 162, 190, 218, 302, 330, 470 }. We apply Lemma 5.7,
noting that a TD(17, m) exists for all odd m > 3605. |

6. Orthogonal Steiner triple systems.

Using PBD constructions, we have proved in Section 4 that there is an (n, Py ¢ U
{15,27})-PBD for all n = 3 modulo 6, n > 3, with 1039 possible exceptions.
For the same values of n, there exist OSTS(n) since B(Py ¢ U {15,27}) C
(OSTS. In this section, we construct OSTS(n) for 121 of the above exceptions.
Our main tool is a generalization of orthogonal Steiner triple systems which
we refer to as orthogonal group-divisible designs. Let (X,G,A) and (X, G, B)
be two 3-GDDs having the same groups. We say that they are orthogonal if the
following properties are satisfied:
1) if {u,v,s} € A and {u,v,t} € B, then s and ¢ belong to different groups.
2) if {u,v,w}and {z,y,w} € A,and {u,v, s} and{z,y,t} € B, thens # 1.
We shall use the abbreviation OGDD to denote orthogonal 3-GDDs. It is easy to
see that OSTS(n) are equivalent to OGDD of type 17, since condition 1) implies
that ANB = 0.
We now give several constructions involving OSTS, OGDD and COQ.

Theorem 6.1. Suppose there is a K-GDD of type T, where K C OST S . Then
there exist OGDD of type T .

Proof: Let (X,G,A) be the hypothesized GDD. For every block A € A, let
(A,Bi(A)) and (A,B;(A)) be OSTS(JA|). Define B; = UaeaBi(A), for
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i = 1,2. We will show that (X,G,B;) and (X,G,B;) are OGDD. Suppose
{u,v,s} € B, and {u,v,t} € B,. Then {u,v,s} € Bi(A) and {u,v,t} €
B, (A), for some block A. Since B; (A) and B, (A) are OSTS(|A|), s # t. Since
{s,t} C A and A is a GDD, s and t belong to different groups. This proves 1).
Now, suppose {u,v,w} and {z,y,w} € B; and {u,v,s,} and {z,y,s} € Bs.
Let{u,v}CAcAand{z,y} CA' € A.IfA# A, thenwe ANA'ands €
ANA’', which implies that w = s. Then {u, v, w} € B;(A)NB;(A), acontradic-
tion, since they are OSTS. Hence, A = A'. Then {u, v, w} and {z, y, w} € B1(4)
and {u,v,s} and {z, y, s} € B,(A). Again, this contradicts the orthogonality of

these OSTS. This proves 2). |
Corollary 6.2. There exist OGDD of type 3%5.
Proof: There exists a 7-GDD of type 3'5 (see [1]). Apply Theorem 6.1. 1

Theorem 6.3. Suppose there exist OGDD of type T, and suppose there exist
COQ(m). Then, there exist OGDD of type mT = {mt:t € T'}.

Proof: Suppose (Q,®:) and (Q,®z) are COQ(m) and that (X, G, A1) and
(X,G, Az) are OGDD of type T. We will construct OGDD on point set X x Q,
having groups H = {G x Q: G € G}.

Arbitrarily impose an ordering on the points in X. For every block A € A;,
(i=1,2) say A = {z,y,2} where z < y < z, construct the m? blocks

Bi(A) = {{(z,0),(y,b),(z,a®;b)}:0,b € Q}.

Define B; = UaeaBi(A), fori = 1,2. We will show that (X,G,B;) and
(X,G,B,) are OGDD. First, suppose {(z,a),(y,b),(2,¢)} € B and {(z,a),
(v,b),(w,d)} € B,. Then {z,y,2} € Bi1(A4) and {z,y,w} € B2(A). Since
Bi(A) and B, (A) are OGDD, z and w belong to different groups of G, and hence
(z,¢) and (w, d) belong to different groups of H. This proves 1). Next, sup-
pose that {(u,a),(v,b),(w,0)} and {(z,d),(y,e),(w,0)} € By are distinct
blocks and that {(u, a),(v,b),(t, )} and {(z,d),(y,e),(t, f)} € B, are dis-
tinct blocks. Then {u,v,w} and {z,y,w} € A; and {u,v,t} and {z,y,t} €
A;. By the orthogonality of .A; and Aj, it follows that {u,v} = {z,y} and
w # t. Without loss of generality, suppose (u,v) = (z,y). Hence, our blocks are
{(u,0),(v,b), (w,0)} and {(1,d),(v,€),(w,0)} € By and {(u,), (v,),(t,
£} and {(u,d),(v,e),(t,f)} € By. Now,c = a @; b for some (Q,D1) €
((Q,®1)) and f = a3 bforsome (Q,®2) € ((Q,®2)). Then,c = d®; eand
f=d@®; e. Hence, (a ®1 b,a @ b) = (d®; e,d D2 e). Since (Q,®1) and
(Q,®) are COQ, (a,b) = (d,e). But then the blocks {(u,a),(v,b),(w,c)}
and {(z,d), (y,€),(w, c)} are identical, a contradiction. This proves 2). ]

Corollary 6.4. Suppose there exist OSTS(u) and COQ(v). Then there exist
OGDD of type v®.

Proof: OSTS(u) are equivalent to OGDD of type 1%. Apply Theorem 6.3. i
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Lemma 6.5. Suppose there exist OGDD of type v*, and OSTS(v). Then there
exist OSTS(uv) and OGDD of type 1¥(+~Dy!,

Proof: This is a standard “filling in groups” construction. 1

Theorem 6.6. Suppose there exist OSTS(u) and OSTS(v), and COQ(v). Then
there exist OSTS(uv) and OGDD of type 1(*~Dyl,

Proof: This is an immediate consequence of Corollary 6.4 and Lemma 6.5. 1

Lemma 6.7. Suppose there exist OGDD of types m" and 1™w'. Then there
exist OGDD of type 1™ w'. If, further, there exist OSTS(w), then there exist
OSTS(mu + w).

Proof: This is a standard “filling in groups” construction. |
The following construction can be thought of as a singular direct product con-
struction for OSTS. It was first presented in [6, Theorem 4].

Theorem 6.8. Suppose there exist OSTS(u) and OSTS(w), COQ(v —w), and
OGDD of type 1""“w' . Then there exist OSTS(u(v — w) + w).

Proof: From Theorem 6.3, there exist OGDD of type (v — w)“. Then from
Lemma 6.4, we get OGDD of type 1%v-*)w!. Since there are OSTS(w), there
exist OSTS(u(v — w) + w). 1

Corollary 6.9. Suppose there exist OSTS(u) and OSTS(v), and COQ(v —1).
Then there exist OSTS(u(v —1) + 1).

We now give several applications of the above constructions.
Lemma 6.10. There exist OSTS(105) and OSTS(195).
Proof: Apply Theorem 6.6 with v = 15 andv = 7,13. |
Lemma 6.11. There exist OSTS(225) and OSTS(2925).

Proof: Start with the OGDD of type 3'° (Corollary 6.2), give every point weight
5, and apply Theorem 6.3, producing OGDD of type 15 15 Using Lemma 6.5, we
get OSTS(225). If we give every point of the OGDD of type 3 15 weight 65, then
we have OGDD of type 195, and we produce OSTS(2925). 1

Lemma 6.12. There exist OSTS(n) for n= 1275, 1365, 1575, 3375, 7755,
9555, and 25389.

Proof: These are all applications of Theorem 6.6, writing n = uv as follows:
1275 = 15.85, 1365 = 195.7, 1575 = 225.7, 3375 = 15.225,7755 = 15 .517,
9555 = 1365.7, and 25389 = 1953.13. ]
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Lemma 6.13. There exist OSTS(n) for n= 1353, 1569, 1977, 2913, 3573,
4551, 5253, 5397, 5601, 6033,7101,8817,9549, 10509, 10977, 11337, 11601,
12801, 19041, and 25377.

Proof: These are all applications of Corollary 6.11, writingn = u(v — 1) + 1
as given in Table 6.1. In each case, we also justify the existence of COQ(v — 1)
by means of a factorization of v — 1. Except for 350, all the factorizations are
prime power factorizations, whence Corollary 5.3 can be applied. 350 = 7.50, so

Lemma 5.2 can be applied here since there exist COQ(50) (Table 5.3). 1
Table 6.1
n=u(v—-1)+1 COQv=1) [ n=u(v-=1)+1 COQ(v-1)

1353 =13(105 —1)+1 104=8.13 |7101=25(285-1)+1 284=4.71
1569=7(225 -1)+1 224=32.7 |8817=19(465—1)+1 464 = 16 .29
1977=19(105 - 1) + 1 104=8.13 | 9549=7(1365 —1) + 1 1364 = 4.11.31
2913=13(225 -1)+1 224=327 |10509=37(285-1)+1 284=471
3573=19(189 — 1) + 1 188=4.47 | 10977 =7(1569 —1)+1 1568 = 32.49
4551=13(351 -1)+1 350=7.50 | 11337=109(105-1)+1 104=8.13
5253=13(405 —1)+1 404=4.101 | 11601 =25(465 —1) +1 464 =16.29
5397=19(285 —-1)+1 284=4.71 |12801=25(513-1)+1 512=512
5601 =25(225 —1)+1 224=32.7 | 19041 =85(225-1)+1 224=327
6033 =13(465 —1)+1 464=16.29 | 25377=13(1953 —1)+1 1952=132.61

Lemma 6.14. There exist OSTS(693) and OSTS(4845).

Proof: Since there exist OSTS(7), OSTS(15) and COQ(7), there exist OGDD of
type 17871 by Theorem 6.6. Since there exist OSTS(7) and a TD(7,98), there exist
OGDD of type 987 by Theorem 6.1. Applying Lemma 6.7, we obtain OSTS(693).
Then, since OSTS (7) and COQ(692) exist, we can apply Corollary 6.9 to construct
OSTS(4845). 1

Lemma 6.15. There exist OSTS(1485) and OSTS(10389).

Proof: As in the proof of Lemma 6.11, there exist OGDD of type 1515 by The-
orem 6.3. Since there exist OSTS(15), there exist OGDD of type 1219151 by
Lemma 6.5. Since there exist OSTS(7) and a TD(7,210), there exist OGDD of
type 2107 by Theorem 6.1. Applying Lemma 6.7, we obtain OSTS(1485). Then,
since OSTS(7) and COQ(1484) exist, we can apply Corollary 6.9 to construct
OSTS(10389). 1

Lemma 6.16. There exist OSTS(1359), OSTS(8919) and OSTS(9507).

Proof: There exist TD(7,194), TD(7,1274) and TD(7,1358), so we have from
Theorem 6.1 OGDD of types 1947, 12747 and 13587. There exist OSTS(195)
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(Lemma 6.10) and OSTS(1275) (Lemma 6.12). Hence, applying Lemma 6.7 with
w= 1, there exist OSTS(1359) and OSTS(8919). Having constructed OSTS(1359),
we again apply Lemma 6.7 to produce OSTS(9507). ]

Lemma 6.17. There exist OSTS(7203).

Proof: Since there exist ICOQ(7), COQ(79) and COQ(80), there exist COQ(554)
by Lemma 5.2. Then, the existencc of OSTS(13) and OSTS(555) imply the exis-
tence of OSTS(7203) by Corollary 6.9. 1

We also construct two previously unknown OSTS(n), n = 1 modulo 6.
Lemma 6.18. There exist OSTS(253) and OSTS(685).

Proof: There exist OSTS(7), OSTS(37) and COQ(36), so OSTS(253) exist by
Corollary 6.9. Similarly, OSTS(19), OSTS(37) and COQ(36) give rise to OSTS(685).
1
Next, we have several applications of the indirect product construction, using
block sizes from the set OST S . These are presented in Appendix 4.
We now have our main existence results.

Theorem 6.20. For any n > 27363, n = 3 modulo 6, there exist a pair of
orthogonal Steiner triple systems of order n. Further, a pair of orthogonal Steiner
triple systems of order n exist for all n=3 modulo 6,3 < n < 27363, with at
most 918 possible exceptions, which are the values in Appendix 3 which are not
underlined. '

Theorem 6.21. For any n > 1921, n = 1 modulo 6, there exist a pair of
orthogonal Steiner triple systems of order n. Further, a pair of orthogonal Steiner
triple systems of order m exist for all n = 1 modulo 6,7 < n< 1921, with at
most 29 possible exceptions, namely the elements in the set {55, 115, 145, 205,
235, 265, 295, 319, 355, 391, 415, 445, 451, 493, 649, 655, 667, 697, 745,
781,799, 805, 1243, 1255, 1315, 1585, 1795, 1819, 1921}.

7. Summary.

Clearly, there remains considerable work to be done before the spectrum of or-
thogonal Steiner triple systems is completely determined. It is striking, however,
that existence can be proved for all n > 27363 when n = 3 modulo 6 when only
two small examples are known (namely, n= 15 and 27).

Of course, many of the remaining exceptions could be handled if one or more
other small examples of OSTS could be constructed. Also, if we had more exam-
ples of conjugate orthogonal quasigroups of small orders, some exceptions could
be eliminated.

The spectrum of conjugate orthogonal quasigroups seems to be an interesting
problem in its own right. For even orders especially, not many small examples are
known. Consequently, the bound of Theorem 5.10 is quite large.
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