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Abstract. Uniquely pseudointersectable graphs are defined; this is closely related to
the uniquely intersectable graphs introduced by Alter and Wang [1]. The S-property
is necessary but not sufficient for a graph to be uniquely pseudointersectable. This
condition is also sufficient for graphs with unique minimum cover. Finally, we show
that for supercompact graphs, unique pseudointersectability and unique intersectability
are equivalent. Thus we generalized some of the results in [1] to a wider class of graphs.

1. Introduction

All graphs considered in this paper are finite, undirected, loopless, and without
multiple edges. Undefined terms and notations can be found in [2]. If X is a
nonempty setand F' = {X;, X3, -, X, } isa family of distinct nonempty subsets
of X whose union is X, then the intersection graph determined by X and F,
I(X, F), is the graph G whose vertex set can be put in one to one correspondence
with the elements of F' such that two vertices of G are adjacent if and only if
the corresponding elements of F' have a nonempty intersection, A graph G is an
intersection graph if there exists a set X and a family F of distinct nonempty
subsets of X such that G & I(X, F). Every graph G is an intersection graph on
some finite set [2] and the intersection number w(@G) is the minimum number of
elements in a set X such that G is an intersection graph on X. Some results on
w(G) were given by Erdds et al [3], M. Hall Jr. [4], Harary [2], Lovasz [6] and
Alter and Wang [1].

For the complete graph K3 we have w(K3) = 3. If X = {1,2,3} then
we can choose, for example, X; = {1}, X = {1,2},and X3 = {1,3} or
X1 ={1,2}, X = {1,3},and X3 = {2,3}. In the former case it is clear that
the elements 2 and 3 are needed only to make the X;’s distinct and do nothing
to indicate adjacency. As another example, the graph K4 — z is given in figure
1 as an intersection graph, and, in this case, element 3 of X is not necessary to
indicate the adjacency of any two vertices. The size required for X can be reduced
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Figure 1
by eliminating these “fillers” used only to obtain distinct representation of each
vertex.

Alter and Wang [1] introduccd the concept of unique intersectability of a graph.
They defined a uniquely intersectable graph as follows:

Given a graph G and | X| = w(G), let F; and F; be two families of nonempty
distinct subsets of X. If I(X,F) ¥ I(X,F) ¥ @ implies that F} can be
obtained from F, by a permutation of the elements of X (i.e. F} & F,) then G is
said to be a uniquely intersectable (u.i) graph.

Based on the argument that the size of X can be reduced we define pseudoint-
ersection graph and uniquely pseudointersectable graph by allowing subset repe-
titions in the family.

If X isasetand F = {X;,X3,---,X,} is a family of nonempty subsets of X
(not necessarily distinct) whose union is X, then the pseudointersection graph.,
denoted by I*( X, F), is the graph whose vertex set is F' and X; and X; are adja-
centifandonlyifs # 7 and X;NX; # @. A graph G is a pseudointersection graph
on X if there exists such a family F' for which G & I*(X, F'). The pseudointer-
section number of G, denoted by w*(G), is the minimum number of elements in
a set X such that G is a pseudointersection graph on X. For the complete graph
K3, w*(K3) =1 and for the graph K4 — =, w*( K4 — z) = 2. Some results on
w*(G) can be found in [7].

Given a graph G and |X| = w*(G), let Fy and F, be any two families of
nonempty subsets of X (notnecessarily distinct). If I*(X, ) ¥ I'(X, ) € G
implies that F} can be obtained from F, by a permutation of the elements of X
(i.e. F1 ~ F,) then G is said to be a uniquely pseudointersectable (u.p.i) graph.

For example, it is easy to see that the graph K4 — z and a triangle are uniquely
pseudointersectable. But these same graphs are not uniquely intersectable. To
see this, note that w(K4 — ) = 3 and w(K3) = 3 andlet X = {1,2,3},
R o= {{1},{2},{1,2},{123}}, /, = {{1},{1,2},{2,3},{1,2,3}},. F{ =
{{1},{1,2},{1,3}} and F; = {{1,2},{1,3},{2,3}}. Clearly I(X,F1) ¥
I(X,R) ¥ K4—zbut Fy 6 F and I(X, F]) = I(X,F;) ¥ Kabut F| ¢ Fj.
The graph given in figure 2 is not u.p.i or u.i.

Alter and Wang [1] established some results on unique intersectability of a graph
and gave four families of graphs with triangles which are uniquely intersectable.

We denote the set of all cliques of a graph G by C(G) . A setofcliques C'(G) C
C(G) of a graph G, is called a cover of G if and only if every element (vertex
and edge ) of G belongs to some element of C'( @) . A cover C'(G) of G is called
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a minimum cover , denoted by K (G), if and only if |C'(G)| < |C"(G)| for any
cover C"(@G) of G.

In section 2 we present a necessary condition for a graph to be uniquely pseu-
dointersectable. The condition is also sufficient for graphs with a unique minimum
cover. In general the condition is not sufficient for graphs with non-unique mini-
mum cover, and we illustrate this by an example.

Let X be a nonempty finite set and F' be a family of nonempty subsets of X.
The family F is said to have the Helly property if for any subfamily F' C F with
X;NX; # @ forall X;, X; in F', we have N{X;|X; € F'} # 0. A graph G is
called a supercompact graph if G is the intersection graph of some family F* of
nonempty subsets of a set X such that

(a) F satisfies the Helly Property and
(b) forany z; # z; in X, there exists X; € F withz; € X;, 22 ¢ X;
Various characterizations of supercompact graphs were given by Lim [5].
In section 3, we prove that for supercompact graphs, unique intersectability
and unique pseudointersectability are equivalent. Thus we generalize some of the
results in [1] to a wider class of graphs, namely supercompact graphs.

2. A necessary condition and other results

Let Q C C(G). The edges which belong to exactly one clique in the set Q
will be called Q-unicliqual edges. For each vertex v of a graph G, we define
C(v) ={C eC(G)|veCC}LT={C(v)|veV(Q))}. Foragiven K(G), let
K(v)={CeK(G)|lveC}and S = {K(v)|]v e V(G)}.

We say that K (G) has the S-property if and only if every vertex of each clique
C in the set K (G) is incident to an K (G) -unicliqual edge of C. For example the
graph G of figure 3 has a minimum cover, K,(G) = {1,2,3,4,5,6,7,8,9}
(the numbers denote the cliques of G). But K;(G) does not have the S-property
because the vertex v of the clique 8 in K(G) is incident to edges of 8, all of
which are not K1 (G)-unicliqual.

Lemma 2.1. For any graph G and any minimum cover K(G),

G ¥ I"(K(G),8") and w*(G) = |[K(G)|.
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Proof: Recall that for each v € V(G), we write K(v) = {C € K(G)|v € C}
and 8’ = {K(v)|v € V(G)}. The function

f:G - I'(K(G),S

defined by f(v) = K(v) is an isomorphism.
Let u and v be vertices of G. Then v and v are adjacent

<=sthere exists I, € K(Q) such that {u,v} € E(L).

<K(u) NK(v) #90.
Thus G = I*(K(G), S"). It follows that w*(G) < |K(G)|. Suppose that G =
I*(X,F) with w*(Q) = |X| < |K(®)|. Let X = {z1,--- ,z,}. LetC; be a
clique of G such that
Ci D {D € Flz; € D}

where z; € X. Then {C;|z; € X} is a cover of G. But this is impossible be-
cause K (@) is a minimum cover. Thus w*(G) > |K(QG)| and hence w*(G) =
|K(G)|.

A necessary condition for a graph to be u.p.i. is formulated in the following
theorem.

Theorem 2.2. Let G be an u.p.i. graph. Then every minimum cover of G has
the S-property.

Proof: Let G be an u.p.i. graph. Suppose that to the contrary there exists a mini-
mum cover K(G) of G such that K(G) does not have the S-property. Then there
exists an element L of K(G) and a vertex v of L such that the vertex v is incident
to edges of L, all of which are not K (G)-unicliqual.



By lemma 2.1, G ¥ I*(K(G),S') where ' = {K(z)|z € V(G)} and
K(z) = {C € K(G)|z € C}. Now let C*(v) = K(v) — {L} and

$*=[8 - {KMW}u{C(}.

Since all edges of L, incident to v are not K (G)-unicliqual; K (v) N K(u) # 0
if and only if C*(v) N K(u) # 0 forany u € V(G). Itis easy to see that
G = I'(K(G),S) = I'(K(G®),S*) but S’ cannot be obtained from S* by
a permutation of the elements of K (G). This would imply that G is not u.p.i.,
which is a contradication to our assumption.

The condition that every minimum cover has the S-property is not sufficient for
a graph to be u.p.i. as can be seen by the following example.

Example 2.3: The graph G of figure 4 has two minimum covers and both have
the S-property. The minimum covers are K1(G) = {1,2,3,4,5,6,7} and
K2(G) ={1,2,3,4,5,8,9}, where the numbers denote the cliques of G. Then
G I*(K\(G),S}) & I*"(K2(G), S}) but we will show that S} % Sj.

Figure 4

Note that S} = {{1},{2},{5},{4),{3,5},{1,4,6},{3,4,6},{2,3,7},
{1,2,7,},{6,7}} and 8} = {{1},{2},{5},{4},13,5}.{1,4,8},{3,4,9},
{2,3,9},{1,2,8},{8,9}}. Suppose that there is an isomorphism from K1 (G)
onto K, (@) such that S can be obtained from S} by f. Then {f(1), f(2), f(4),
f(5} ={1,2,4,5}. Since {3,5} € S} and {3,5} € S and f(5) # 3, we
must have f(3) = 3. Thus f(5) = 5. Itis easy to see that {f(6), f(7)} =
{8,9}. Suppose that f(6) = 8. Then {3,4,6} € S but {f(3), f(4), f(6)} =
{3,f(4),8} ¢ S;. Therefore f(6) # 8 and hence f(6) = 9, f(7) = 8. This
would imply that {£(2), £(3), (1)} = {f(2),3,8} € S} because {2,3,7} €
S!. But this is impossible because {f(2),3,8} ¢ S;. Thus S} # S;. So G is
not u.p.i.



Lemma 24. Let G be a graph. Then every clique (¥ K1) in a minimum cover
K(QG) contains an K(QG) -unicliqual edge.

Proof: Without loss of generality let G be a connected graph and G ¥ K. Sup-
pose that there exists a clique C in a minimum cover K (@) such that C is not
K (G)-unicliqual. Then every edge of C belongs to some other clique in K(G).
Thus K(G) — {C} also cover G. But this is impossible because K (G) is a min-
imum cover of G.

Theorem 2.5. Let G = I*(X, F) where |X| = w*(G) and F be an arbitrary
family of non-empty subsets of X . Suppose that G has a unique minimum cover,
say K(Q) that has the S-property. Then C is an element of K(G) if and only if

C={D € F|z € D}
forsomez € X.

Proof: LetG = I*(X, F) where X = {z1,--- ,z,}and F be an arbitrary family
of non-empty subsets of X whose union is X. Suppose that K (G) is the unique
minimum cover of G and has the S-property. Then |K(G)| = n.

For each z; € X, let L; be a clique of G such that

L;Q{DEF!I{ED}.

Thenthe set {L1,L3,- -, Ly} is a minimum cover of G. Thus the uniqueness of
K (@) implies that for each C € K(G),

CD{D € Flz; € D}

for some z; € X.

Necessity: Let C € K(G). Then C D {D € F|z; € D} for some z; € X. Let
{D1, D} be an edge of C which is K (G)-unicliqual (this edge exists by Lemma
2.4). We assert that D, N D, = {z;}. For if not, then there exists z' € D, N D,
with ' # z;, 2’ € X. Hence there exists C' € K(G) such that

C' 2{D € Fl|z' € D}.

Note that C' # C; by the minimality of K (G). But this would imply that the
edge { Dy, D, } belongs to C. This is impossible because that edge { Dy, D, } is
K(G)-unicliqual. Thus D1 N D, = {z;}.
Sufficiency: Let T = {D € F|z; € D}, z; € X. Since K(G) is unique, there
exists C € K(G) with

C D {D € Flz; € D}.

We claim that C = {D € F|z; € D}. The proof is similar to the proof of the
necessity. Hence T' = C € K(G).



Corollary 2.6. Let G = I*(X, F) where |X| = w*(Q) and F is an arbitrary
family of non-empty subsets of X . Suppose that K(G) is the unique minimum
cover of G and has the S-property. Then forany C € K(QG)

|n{D|D € C}|=1.

Theorem 2.7. Let G be a graph. Suppose that G has a unique minimum cover,
K (QG) that has the S-property. Then G is uniquely pseudointersectable.

Proof: Bylemma2.1,G < I*(K(QG), S'). Let F be an arbitrary family of non-
empty subsets of X, |X| = w*(G) and G = I*(X, F). For each v; of G, let X;
be the corresponding set in F'.

By theorem 2.5 the following function is well-defined:

f:K(G) - X
CHzx

where {z} = N{D|D € C} (by corollary 2.6). f is onto by theorem 2.5 and
corollary 2.6. By the definition of clique, f is one-one. Thus f is an isomorphism.
Claim: X; = {f(C)|C € K(v)}.
Proof of the Claim: Let z € X;. Then there exists a unique element C of K(Q&)
such that f(C) = z and {z} = N{D|D € C}. Theorem 2.5 implies that X; € C,
ie.,C € K(v;). Thusz € {f(C)|C € K(w)}.

Conversely let z € {f(C)|C € K(v;)}. Then there exists C € K(v;) such
that f(C) = z and {2} = N{D|D € C}. But X; € C and hence z € X;.

Since X; is an arbitrary element of F and X; = {f(C)|C € K(v;)}, F can
be obtained from S’ by an isomorphism f from K(G) onto X; ie., F ~ S'.
Therefore G is u.p.i.

Corollary 2.8.
(@) Every triangle-free graph is u.p.i.
(b) Every star n-gon is u.p.1.
(©) Let G be a graph such that |C; N C;| < 1 for any two cliques C; and Cj
of G. Then G is up.i.

Theorem 2.9. Let G be a graph with a unique minimum cover. Then G is an
u.p.i. graph if and only if K(G) has the S-property.

Proof: Follows from Theorems 2.2 and 2.7.

3. Relation with uniquely intersectable graphs

Sumner [8] defines a graph G to be point distinguishing whenever distinct vertices
of G' have distinct closed neighbourhoods. i.e. N(z) # N(y) forany z # y in
V(G) where N(z) = {z} U {z € V(G)|z is adjacent to z}. In [5], Lim shows
that a graph is supercompact if and only if it is point distinguisuing. He further
shows that for any graph G, G is supercompact if and only if G & I(C(G®),T).



Theorem 3.1. A graph G is supercompact if and only if G = I(K(G), S").

Proof: Necessity: Let G be a supercompact graph. Then G & I(C(G),T)
where T = {C(z)|z € V(G)} and C(z) = {C € C(G)|z € C}.

We will show that all elements of S’ are distinct. Recall that S’ = {K(z)|z €
V(G)} and K(z) = {C € K(G)|z € C}. Let K(z) and K(y) be any two
elements of S’'. Then we assert that K(z) # K(y). To see this, we suppose that
K(z) = K(y). Letv # y € N(z) where N(z) = {2 € V(G)|z is adjacent
with z}. Then v is adjacent with z and there exists L € K (x) such that the edge
{v,z} belongs to L. Since K(z) = K(y), L € K(y) and hence v is adjacent
with y, i.e., v € N(y). Similarly if v # z € N(y) thenv € N(z). Thus
N(z) — {y} = N(y) — {z}. Since K(z) = K(y), z and y are adjacent. Thus
N(z) = N(y) where N(z) = N(z) U{z}. But this would imply that G is not
supercompact which is impossible by assumption.

Since K(G) covers G, it is easy to see that C(z) N C(y) # 0 if and only

if K(z) N K(y) # @ forany z,y € V(G@). Thus G & I(C(R),T) =
I(K(®),S8).
Sufficiency: Let G be a graph and G & I(K(G),S'). All elements of S’ are
distinct. This implies that all elements of T are also distinct. To see this, let
C(z) and C(y) be two arbitrary elements of T'. But K(x) # K(y). So without
loss of generality we assume that there exists L € K(z) and L ¢ K(y). Thus
L € C(X) but L ¢ C(y) and hence C(z) # C(y). Since K(G) covers G,
K(z) N K(y) # 0ifandonly if C(z) NC(y) # @ forany z,y € V(G). Thus
G ¥ I(K(G@),S") & I(C(G),T) which implies that G is supercompact.

Theorem 3.2. For any supercompact graph G, w(G) = |K(G)|.
Proof: By theorem 3.1, G & I(K(G),S') and hence w(G) < |K(G)|. Sup-

pose that w(G) < |K(G)|. Let w(G) = |X|and G ¥ I(X,F) where F isa
family of non-empty subsets of a set X. Let L; be a clique of G such that

L; 2 {D € Fz; € D}

where z; € X. Then {L;|z; € X} isacoverof G and |[{L;|z; € X}| < |K(Q)|.
This is impossible because K(G) is a minimum cover of G. Thus w(G) >
|K(G)| and hence w(G) = |K(G)|-

Theorem 3.3. Let G be a supercompact graph. Then G is uniquely intersectable
ifand only if G is uniquely psuedointersectable.

Proof: Necessity: Let G be an u.i. supercompact graph. By theorem 3.1 G &
I(K(®),S"). Let G = I(X,F) where |X| = w*(G) and F is an arbitrary
family of non-empty subsets of a set X. We assert that all elements of F are
distinct. To see this, we assume that X; = X; for two subsets X; and X of F.
Then X; N X # @ if and only if X; N X, # @ for any X € F. But this would

10



imply that G is not supercompact, which contradicts our assumption. Since G is
supercompact, theorem 3.2 implies that w(G) = |K(G)|. So |X| = w*(G) =
|K(@)| = w(G). Thus F ~ S’ because G is u.i. and hence G is u.p.i.
Sufficiency: Let G be an u.p.i. supercompact graph. Theorem 3.2 implies that
w(G) = |K(G)|. Let G & I(X, F) where |X| = w(G) and F is an arbitrary
family of non-empty subsets of a set X. By theorem 3.1, G & I(K(G),S).
Then F ~ S’ because w*(G) = |K(G)| = |X| and G is u.p.i. Thus G is u.i.

Corollary 3.4 ([1, theorems 1.2 and 2.4]).
(a) Every triangle-free graph is u.i.
(b) Every star n-gon is u.i.

Proof: (a) Without loss of generality let G be a connected triangle-free graph. If
G = K, then it is easy to verify that G is u.i. IfG ¥ K then G is supercompact
(5, corollary 2.4]). The result then follows from theorems 2.7 and 3.3.

(b) Star n-gon is supercompact and its minimum cover is unique and has the
S-property. The result follows from Theorems 2.7 and 3.3.
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