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Abstract. A graph covering projection is a local graph homeomorphism. Certain
partitions of the vertex set of the preimage graph induce a notion of “concreteness”.
The concrete graph covering projections will be counted up to isomorphism.

1. Introduction

In this paper, all graphs are supposed to be simple. The vertex set and the edge set

of a graph G are denoted by V(G) and E(G), respectively. A graph H is called
an r-fold covering of the graph G if there is an r-to-one homomorphism p from
H onto G, called r-fold covering projection, which sends the neighbors of each
vertex z € V(H) bijectively to the neighbors of p(z) € V(G). Topologically
speaking, the covering projection is a local homeomorphism.

The fiber of the vertex v € V(G) is the set p~! (v). An r-fold covering pro-
jectionp : H — G is said to be concrete if there is, in addition, a partition
P = (P,---, P) of the vertices of H such that every partition set P; meets ev-
ery vertex fiber exactly once; we write (p, P) for short. The sets P; of P are called
the sheets of p.

There is a natural kind of isomorphism between covenng projections of G. Let
I" be the automorphism group of G. An lsomorphzsm of the covering projections
pand p of G is a commutative diagram

H Y 7
°| ; (1)
G — G )

)
with an isomorphism and y € I'. An isomorphism of the concrete covering
projections (p,P) and (p, P) of Gisan isomorphism of p and p such that( P) €
‘P) forevery P € P.

Graph coverings are useful in many areas of graph theory. A nice exampleis due
to Mohar, who used covering constructions for the complete graph on 4 vertices
to enumerate the akempic triangulations of the 2-sphere with exactly 4 vertices of
degree 3 [6], [7]. A general theory of graph covering is developed in [2].

Although there is a good classification of the isomorphism classes of r-fold
covering projections [5] by means of permutation voltage assignments (which will
be defined in Chapter 2), counting formula are only known in two special cases,
namely for 2-fold covering projections, where the enumeration can be done by
commutative algebra arguments [4], and for identity graphs, i.e. graphs with trivial
automorphism group [5]. Our purpose is to count the isomorphism classes of
concrete r-fold covering projections of graphs.
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2. Permutation voltage assignments

Permutation voltage assignments were introduced by Gross and Tucker [1] as a
powerful tool to handle graph covering spaces. Let S, denote the symmetric group
ontheset{1,---,r}. Foragraph G, let A(G) be the arc set of the corresponding
symmetric directed graph. A permutation voltage assignment in S, for G is a
mapping f : A(G) — S, such that f(v,w) = f(w,v)~! whenever v and w are
adjacent vertices of G. The pair (G, f) is called a permutation voltage graph.

Given such a permutation voltage graph (G, f) , we construct the derived graph
G as follows. Its vertex set is the cartesian product V(G) x {1, --- , r}; two ver-
tices (v, 1), (w, j) are adjacent in G iff v, w are adjacent in G and f(v, w)(7) =
j. Itis easy to see that G; is an undirected simple graph.

Gross and Tucker showed that the natural projection py : Gy — G (sending
vertex (v, 1) of G to vertex v of G) associated with a permutation voltage graph
(G, f) is an r-fold covering projection [1]. Moreover, considering the sets P; =
{(v,d)]v € V(&)} (i = 1,---,7) as sheets of p;, we obtain a concrete r-fold
covering projection (pys, Py).

The following theorem allows us to restrict attention to derived graphs of per-
mutation voltage graphs.

Theorem 1. Let (p,P) be a concrete r-fold covering projection of G. Then
there is an assignment f of voltages in the symmetric group S, for G such that
the diagram
¥
H—Gy
I AVING 7
G

is an isomorphism between (p, P) and (ps, Py) for some .

Proof: Let Py, -- - , P, be the sheets of P. For any two adjacent vertices v, w of
G, set f(v,w)(i) = j iff vertex v; € p~!(v) N P, is adjacent to vertex w; €
p~'(w) N P; in H. Then the mapping ¢ : H — Gy, defined by ¢(v;) = (v,9),
is the desired isomorphism. |

3. Classification of Concrete Covering Projections

Let F, denote the set of permutation voltage assignments in S, for G. LetT" act
on A(G) via

(v, w) = (7(v),(w)),

and let S, act on itself via conjunction; denote these actions by I', and Sf respec-
tively. Now define a : A(G) — A(G) by a(v,w) = (w,v) andf : S, — 5
by B(p) = p~!. Then F, consists of all mappings f : A(G) — S, such that
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fa = Bf. Since every v € I, commutes with o and every p € S¢ commutes
with B, the group I', x S¢ acts on F, via exponentiation:

(1) =pfy . @

Theorem 2. The isomorphism classes of concrete r-fold covering projections are
in one-to-one correpondence with the orbits of the exponentiation groupT, x S¢
inF,.

Proof: Assume that the permutation voltage assignments f,f are in the same
orbit of the exponentiation group I, x S¢. Then we have

Fv,w) = pf (771 (v), 7~ (w)) ! &)

forsomey € T, p € S, and every (v,w) € A(G). Define ¢ : Gy — G~
by ¥(u,) = (7(u),¢(4)). Then ¢ is an isomorphism, and the pair (¢, ) con-
stitutes an isomorphism between the covering projections py and Py Since ¢
preserves sheets, we have found an isomorphism between (pys, Py) and (p-, i P )

Conversely, let (ps, Py) and (p f,'P ) be isomorphic for some f, f € F wnh
an isomorphism ¢ and 4 € I'. Since ¢ preserves sheets and fibers, y(u,i) =
(7(u), p(3)) for some p € S,. Now it is easy to verify that equation (3) is
satisfied for f and f by ¢ and +y; hence both assignments are in the same orbit of
exponentiation defined by (2). |

4. Enumeration of Concrete Covering Projections

Let R be the ring of rational polynomials in the variables z;, - - - , z,; we write

z = (z1,---,z,) for short. A monomial in R is denoted byz‘ =z ‘zé’ ez

where Ay, - - , A, are nonnegative integers. The cap-product on R, introduced by
Redfield [9], is defined first for sequences z‘,z", -+ of ¢ > 2 monomials by

r q-1
2N#N...= (Hk*%!) = TII(V)*!
k=1

if A = p = ..., otherwise it is 0. Then the cap-product is linearly extended to
arbitrary polynomials in these variables.
Now letX = (), ---,),) be a partition of r, i.e.

’
= k.
k=1 .
The partition polynomial is the generating function of the partitions of r:

P(z) =) 2\
A
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Now let A be a group acting on a set X of order r. The cycle type of a € A is
Aa) = (M (a),---, 2 (a)) where \;(a) is the number of cycles of a of length
kfork=1,-.. r. For anatural number p, the p-th order cycle index of A is the
polynomial

Zy(Aix) = —Ez““’)

aEA

For p = 1, this coincides with the (ordinary) cycle index introduced by Pélya [8].

Note that the automorphism group I" of the graph G acts on the edge set E(G)
in a natural way; denote this action by I'.. An edge [v, w] of G (or the corre-
sponding edge cycle ) is said to be diagonal for 4 € T, if v, w are in the same
(vertex) cycle of 4 of length t and 'yf(v) = w. Every edge cycle w of y € T,
of length I(7) corresponds to two arc cycles of 4 € I', of the same length if 7
is not diagonal, while it corresponds to one arc cycle of «y of length 2 [(#) if  is
diagonal.

Now let v € I', and define, for any edge cycle « of «, the polynomial

Z2(Sy;x) if wis diagonal,
P, (z) otherwise.

Q-(mz) = {

Theorem 3. The number of isomorphism classes of concrete r-fold covering
projections of G is

|FIE E H Q.(mx) NP,

~nele  ° pES, 7€C()
where C(v) the set of edge cycles of ~ and s() is the length of an arc cycle of
~ corresponding to m.

Proof: By Theorem 2 and Burnside’s lemma, we have to count the permutation
voltage assignments f in S, for G which are fixed under exponentiation (2) for
v €Iy and p € 5%, i.e. the assignments f such that

F(y(v),y(w)) = pf(v,w)p™! @)

forevery arc (v, w) of G. Letw be the edge cycle of y containing [v, w] € E(G).
We distinguish two cases.

Case 1: The edge cycle « is not diagonal. The length of a corresponding arc cycle
«' containing (v, w) is s(r). By induction, if the assignment f satisfies equation
(4) for every arc in #', then

F(v,w) = o*™ f(v,w)p~*™. ®
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On the other hand, if we assign f(v, w) to the arc (v, w) such that (5) holds, the
assignments for the other arcs in «' are given recursively by equation (4). It is
well known that there are

MA(p*™)) = Q,(m;z) N2

possible choices for f(v,w) in S, satisfying equation (5).
Case 2: If the edge cycle  is diagonal, the same arguments as in Case 1 lead to

fo,w) ™ = oF f(v, )™ F ©
as a necessary and sufficient condition for the choice of f(v, w).
Lemmad. Let a € S,. Then the equation f~' = afa" has
Z2(8;33) NN

solutions in S,.

Proof of the lemma: It is easy to see that the solutions of 4~! = afa™! corre-
spond bijectively to the solutions of £2 = a? by setting £ = fa.

Now leté = o? and let 5y , - - - , 8,, be the conjugates of & in S,. It is well known
that
r!
W= ———.
IT(X(8))

The sets X; := {£ € S;|¢? = &} are p\airwise disjoint and of the same cardi-
nality ¢(6); hence

Z3(Sy;2) N2 = — Er\(w’) ZA®

soGS,

=L E T2 O

! i=1 §€X;

= lw (c(&) )

= ¢(6).

To complete the proof of Theorem 3, note that equation (6) amounts to
Q,(m;z) N

possible choices for f(v,w) by Lemma 4. 1
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Corollary 1. The number of isomorphism classes of concrete 2 -fold covering
projections of G is
Z(T';2),

where2 = (2,---,2).
Proof: We have Z,(S;;z) = z% and P;(z) = :E% + 1. If 2 = a:%,thcn

Z2(S2;7) N3} = Py(z) N1? = 2.
If 2¢*™) = g, then s() is 0dd, hence = is not diagonal, and
P(z)NzH = 2.

The assertion now follows from Theorem 3. |

We continue with some useful remarks for application of the counting formula

of Theorem 3.

1. If « is a diagonal edge cycle for the (vertex) cycle o of length ¢, then s(#) = .
Now assume that 7 is not diagonal and contains an edge [ v, w] such that v, w
are contained in the (vertex) cycles oy, oy, of lengths t,, t,, respectively; then
s(m) = lem(ty,tw).

2. The cycle type of ©° is

M%) =D M) ged(s, k),
k

where k ranges over all nonnegative integers such that lem(s, k) = si (1 =
Lo,

3. The second order cycle index Z, (S,; £) can easily be computed from the cycle
index Z(S,; z). The cycle indices of symmetric groups S, are tabulated in [3]
forr < 10.

The crux in applications of Theorem 3 are diagonal edge cycles. If they are
excluded, a more closed counting formula can be obtained.

Theorem 5. If no automorphism of G contains diagonal edge cycles, then the
number of isomorphism classes of concrete r-fold covering projections of G is

= Y 2SI,

: PES,

where IL(A(y)) = (TI(A()), II(A(¢?)), -+ , TI(A(¢"))).
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Proof: Since P,(z) N2*¥" ™ = IT(A(p*™)), we obtain from Theorem 3

ol E D I(A(p*™))

Y€l " p€S,

T'E( DI -n(x(so'))*'m))

PES, 'Yerc

E Z(TsT(A(9))).

" pES,

If we restrict attention to identity graphs, we conclude

Corollary 2. If G is an identity graph with m edges, then the number of iso-
morphism classes of r-fold covering projections of G is

Pr(z)s
the power is to be understood with respect to the cap-product, which is indicated
by the N-index.

Proof: Since Z(I'e;IL(A(p))) = IT(A(p))™if T, is trivial, we obtain from The-
orem 5

'Zn(,\(p))"‘ EH(A)"“ = P ()7,

@ES,
which proves the corollary. |
Note that almost all graphs are identity graphs [3, p. 206].
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