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Abstract. Halberstam, Hoffman and Richter introduced the idea of a Latin triangle as
an analogue of a Latin square, showed the existence or non-existence of Latin triangles
for small orders, and used a multiplication technique to generate triangles of orders 3”
and 3™ — 1. We generalize this multiplication theorem and provide a construction of
Latin triangles of odd order n for n such that n+ 2 is prime. We also discuss scalar
multiplication, orthogonal triangles, and results of computer searches

I. Introduction

The concept of a Latin square has been generalized in many ways, such as by
relaxing the Latin property (the requirement that each symbol must occur exactly
once in each line) or by requiring that lines in each of three directions be Latin. In
[1], Halberstam, Hoffman and Richter introduce the Latin triangle, in which the
rows are parallel to the sides of an equilateral triangle and a natural pairing of the
rows produces lines which are to be Latin.

A triangle of order n is an array in the shape of an equilateral triangle having n
rows in each of the directions parallel to a side of the triangle withrow ¢ (1 < 1 <
n) having n+ 1 — 1 entries. The horizontal rows are called the a-rows. The rows
in the \-direction are the b-rows, and the rows in the /-direction are the c-rows.
For the definition of a Latin triangle of order n, or an LT(7), we must distinguish
between the even and the odd case.

For odd positive integer n and for z € {a,b,c} the line given by z = 1 (for
2 < i < L) is the union of the z-rows z = i and z = n+ 2 — 4. The line
given by z = 1 is just the z-row 1. An LT(n) is a triangle of order n with entries
among n distinct symbols such that each symbol occurs exactly once in every
line. For even positive integer n and for = € {a, b, c} the line given by z = i (for
1 < ¢ < 2) is the union of the z-rows z = tand z = n+ 1 — 4. AnLT(n)
is a triangle of order n with entries among n+ 1 distinct symbols such that each
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symbol occurs exactly once in every line.

5

6 4 9

4 56 4 5

8 6 4 2 59 4

9 75 31 6 4 53
78 9123 7891 2
2315978 2 3186 17
3126 4897 312917 8E6

1 23 456 7 89 1 2 3 456 7°8
Figure 1 Figure 2
Figure 1 illustrates an LT (9) with fifth a-row (9 7 5 3 1), seventh b-row

and sixth c-row

The line given by a = 3 is the union of the third a-row (23 159 7 8) and the
eighth a-row (6 4).

Figure 2 illustrates an LT (8). The line given by a = 3 is the union of the third
a-Tow (2 3 1 8 6 7) and the sixth a-row (5 9 4).

An entry in the lines a = 1, b = j, ¢ = k has coordinates (1, j, k). In Figure 1
the five occurrences of the entry 2 have coordinates (1,3,2),(2,5,3),(3,4,1),
(4,2,5),(5,1,4). In Figure 2 the occurrences of 7 have coordinates (1,2,2),
(2,3,4),(3,1,3),and (4,4,1). With this system of coordinatizing, coordinates
do not represent unique positions in triangles of even order.

In [1] and [2] examples are given of LT(n)’s for every order n < 13, except
forn = 4,6,10 which are shown not to exist, and for n = 15. The first of
these papers presents a multiplication theorem which implies the existence for
every positive integer » of an LT(3") and an LT(3"™ — 1). We generalize this
multiplication theorem and show restrictions on this type of multiplication result.
We give a constructive proof of existence of LT(n)’s for any = such that n +
2 is prime and show a new example of an LT(17) constructed in this way. We
also present an LT(14) and discuss multiplication of a Latin triangle by a scalar
and results of some computer searches. Finally, the concept of orthogonal Latin
triangles introduced in [2] is addressed.
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I1. Multiplication Theorem

Definition. Let n be an odd integer. A complementary pair of Latin triangles of
order nis an ordered pair (T}, T>) such that T} is an LT(#), T is an LT(n— 1)

T AT

n /N

considered as squares, are Latin.

Theorem 1. Let (T, T3), (T3,Ts) be complementary pairs of Latin triangles
of orders n and m (both odd) respectively. Then there exists an LT(nm) and an
LT(nm —1).

Proof: Without loss of generality, assume that the entries of 73, T3> belong to
{1,2,...,n}, and the entries of T3, T4 belong to {1,2, ..., m}. Construct a new
triangle as in Figure 3, where u, is the entry in the corresponding position of T3
(s = (¢,7,k)) and v; is the corresponding entry in Ty. That is, u, is the (2,1,1)
entry of T3,...,um;+_:z is the (1,2,1) entry of T3, and v, is the (1,1,1) entry of
Ty (top vertex),..., v az-n is the (1,1,1) entry of Ty (bottom right vertex). For
1 = 1 or 2, T; + k means the triangle with (k£ — 1) n added to each entry in T;. We
need only to check that each of the horizontal lines contains each element from
{1,...,mnm}, since the argument is analogous for the other two directions.

The case a = 1 isclear. Theline a = n+ 1 consists of the bottom rows of T} + u;
for all u; in the second row of T3 plus the bottom row of T} + u,. Since T3 is Latin,
u is not in its second row. Thus we obtain all the elements from {1 .,mm}.

m—l

Similar rcasoning applies for the linesa = in+ 1,fori=2,..., &=,
Consider lines a = j with2 < j < = Since

is Latin the bottom row of T4 has all entries from {1,..., m} except u;. Clearly

ﬁNﬁ/

will be Latin as well, and so line ; has all entries from {1, ..., nm} except for the
entries (u1 — 1)n+ 1,..., u;n, but these appear by matching the correct rows of
T + u; at the bottom and top of the constructed triangle.

Fora = j withn+ 2 < j < 2n we note that uy, u3 must be included in the
secondrow of T3 and sotheentries (ua —1)n+1,...,usn, (us—1)n+1,...,usn
are covered. Since T3, Ty are complementary we get v; = u; and since v; does
not appear in the second row of 73 we obtain all the entries (u; —1)n+1,...,u1n
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-l - (n-2)
m(m*l)

without repetition by matching the correct rows of T, + v; at the bottom and top
of the constructed triangle. All the other entries appear as part of some

Fora = j with 2n+ 2 < j < 3n we note that since T3, Ty are complementary,
{u2,u3} = {v2,v3}. If {us,us,u6} N {uz,u3} = ¢ then us,us,us must be
included in the third row of T3 and so we obtain the entries (ug —1)n+1,...,u4m,
(us—Dn+1,...,usn (ug — 1)n+ 1,..., ugnby matching the correct rows of

T + vy at the bottom and top of the constructed triangle. The situation is similar
with T3 + v3, and since uz u3 do not appear in the third row of T3 we have no
repetitions. All the other entries then appear as part of some

If {u4, us, ue }N{u2,us} # ¢ then the element(s) in the intersection do not appear
in the third row of T3 nor in the third row of Ty, s0if k € {u4,us, us }N{u2,us}
we obtain the entries (k — 1)n+ 1,..., kn from the third “row” from the top of
the constructed triangle. If k € {u4,us,us} — {uz,u3} then k is in the third
row of T3 and if k € {uz,us} — {u,4,u5,u6} then k is in the third row of T4,

Figure 3
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thus yielding all the necessary entries exactly once, while the others are obtained
from some T} + k T3 + k the third “row” of the constructed triangle. Arguments
similar to the last case clearly work for remaining lines.

Similarly we also conclude that the triangle shown in Figure 4 is an LT(nm— 1)
where u,, v; have the same meaning as before.

Corollary 1. Let (T,,T>) be a complementary pair of Latin triangles of odd
order n. Then there exists an LT(n*) and an LT(n* — 1).

Corollary 2. Let (Ty,T2),(T3,Ts) be complementary pairs of Latin triangles
as in Theorem 1. Then for each nonnegative integer k there is an LT(m*n) and
an LT(mFn— 1).

Proof: Arguments similar to those in the proof of Theorem 1 show that the Latin
triangles so constructed are again complementary.

um(mﬂ ) - (m-1
2

+
T]
v
m(m-1) - (m-2
mee
T2 + U3 T2 + "2
T+ ‘
T2 + u.I
Figure 4

We provide two examples of complementary pairs of Latin triangles: one ex-
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ample of order 3 and one of order 15.

= 3 2 1
21 3 =2 3
1
3 2
1 32 213
32 1 3 2
Cleartly 2 1 3 and 1 are Latin.

1 E 4 7 5 2 3 6 C 8 B D 9 AF
B 2 D E C 8 7 41 A 9 3 6 F 5§
3 1 8 C 7 E 4 5 2B D A F 9 6
4 8 3 A B 6 DE 917 F 5 C 2
7 D15 9 A CB 3 EF 8 2 6 4
Ty = 8§ B C6 2 3 9 DA F1E 4 5 7T =1
2 9 A1 4 7 B 8 F 5 C 6 D E 3
EC 5 38 D 6 F 7 2 41 A B 9
A7 E D15 F 9 4 6 3 2 B 8 C
6 3 B 4 EF A 2 8 C 5 41 7 D
C5 2 9 F1E 7 B D 6 4 8 3 A
D 4 7F 6 B2 CE 9 A S5 31 8
9 6 F 8 D 4 1A 5 3 E C 7 2 B
S F 9 B ACZB83 6 4 2 7 ED 1
FA 6 23 9 5 1D 7 8 B C 4 E

The first example together with Theorem 1 yields Theorem 2 of [1] and the
same example with corollary 2 yields corollary 2.1 of [1]. The second example,
however, is new. It is the result of a computer search [3] for an LT (15) that forms
a complementary pair with a specified LT(14). (See section IV.) Applying the
multiplication theorem and its corollaries, we deduce the existence of an LT(3/ -
5%) and LT(37 .5% — 1), where j > k > 0.

In [1] it was asked whether there are other multiplication theorems. It is clear
that any result based on “bumping” two Latin triangles of orders nand (n— 1) as
in Theorem 1 produces a pair of complementary Latin triangles whose entries are
the constants u, and v;. Thus there are multiplication theorems of this type if and
only if there are complementary Latin triangles of orders n and m.

III. An Algebraic Construction

Up to this point, the only known examples of Latin triangles have been those
of small orders and those that result from the multiplication theorem of [1]. The
following direct construction is based on properties of the finite fields.
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Theorem 2. If n+ 2 is prime, then there exists a Latin triangle of order n.

Proof: We will show that the triangle above (or below) the cross diagonal of the
multiplication table for the field GF(n + 2) is an LT(n) when the headline and
sideline of the table are properly ordered. The required orderingis 1,2,3...n+1
across the headline and 1-1,2-2,3-2 ... (n+ 1)~! down the sideline. (See the
example following the proof.) The table has the form shown. The a-rows are those
parallel to the cross diagonal. The b-rows are horizontal; the c-rows are vertical.

1
1-1 1
2-1 2-1
3-1 3-1

3 .. F . . . n+l
3 .. 7 . . . n+l

2
2

-1

(n+.l)'l (n+ 17!

The entry in the (4, 7) position is i~!j. If the (1, 7) entry is in the partial cross
diagonal whose upper right entry is k, then i + j = k + 1. Note that if =1 is in
the main cross diagonal, i+ j = n+ 2= 0,507 = —iand i~} = i~1(—4) =
—1 = n+ 1. Therefore all the entries above the main cross diagonal are from the
set {1,2,3,...,n}. The table has rotational symmetry; that is, the (1,/) entry
is the same as the (—i, —j) entry. Since the table is a multiplication table with
rotational symmetry, the triangle is Latin along the b and c lines.

Now consider lines in the e direction. The first a-line is the partial cross di-
agonal headed by n. The kth line is made up of the two partial cross diagonals
headedbyn—k+ landk — 1 fork = 2,...,%‘—. Suppose that two entries in
the kth a-line are the same and that they occur in the (r, s) and (¢, u) positions.
First, assume that (r,s) and (t,u) are in the same a-row. Let h be the heading
ofthatrow. Thenr+ s=h+ 1 =t+u;r s =t"lu;s0r+s=rus! +y;
s(r+s)=u(r+s).Sos=uvorr+s—0.Butr+s=h+1<n+2,50
T+ 8 # 0; consequently, s = v and r = 1.

Now suppose s = t~! u are in the same a-line but in different a-rows where
r~1s is in the diagonal row headed by n— k + 1 and ¢t~y is in the diagonal row
headedby k— 1. Thenr+s=n—k+2 andt+u = k,sor+s+t+uv = 0. Thus
s(r+ s) + 3(t+u) = 0,andsince t = rus™!, (s + u)(r + s) = 0. Therefore
r+s=0o0rs+u=0.Butr+s=n—k+2 <n+2,sincel < k<mnso
r+ s # 0. Furthermore r+ s = n—k+2 and t+ u = kimply thats < n—k+ 1
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12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1-1 1 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 -.7.718
2-1 1010 1 11 2 12 3 13 4 14 5 15 6 16 7 17 8.:8 9

3-1 13113 7 1 1 8 2 15 9 3 16 10 4 17 1 5.18 12 ¢

-~
o
—
L

4-1 5 510 15 1 6 11 16 2 7 12 17 3 8 13.18

61 | 16,16 13 10 7 4 1 17 14 11 8 5 2 18 15 12 9 6 3
7Ll 11 3 14 6 17 9 1 12 4 15 7//18 10 2 13 5 16 s
8l | 1212 5 17 10 3 15 8 1 13 6/"1/8 11 4 16 9 2 4 7
9l |17 717 15 13 11 9 7 s 3 1,8 16 14 12 10 8 & 4 2
10-1 2| 2 4 6 8 10 12 14 16 /ig 1 3 5 7 9 11 13 15 17
11-1 7, 7 1 2 9 16 4 1118 6 13 1 8 15 3 10 17 5 12
12-1 8| 8 16 5 13 2 10//1/8 715 4 12 1 9 17 6 14 3 1
13-1 3] 3 6 9 12 15/1/8 2 5 8 11 14 17 1 4 7 10 12 1¢
1 s f1s 1 7 3 /‘i; 14 10 6 2 17 13 9 5 1 16 12 & -

/
Ve
15-1 14 )14 9 4/18 13 8 3 17 12 7 2 16 11 6 1 15 9 =

16-1 6] 6 1218 S5 11 17 4 10 16 3 9 15 2 8 14 1 7 1:

17-1 9 9/18 8 17 7 16 6 15 5 14 4 13 3 12 2 11 1 1

18-1 8 |18 17 16 15 14 13 12 11 10 9 8 7 6 5 & 3 2
AnLT(17)

andu < k— 1. Thus s+ u < m, s0 s+ u # 0. We conclude that this triangle is
Latin in the a lines.

It is also instructive to view Latin triangles from a different perspective. Con-
sider a triangular array of odd order n = 2s — 1. We may label each cell with its
three line coordinates, as in section I. Then an LT(n) may be represented as n sets
of s triples from {1,2,...s} where each set is the transversal of cells occupied
by some fixed symbol from {1,2,...,n}. For example the LT(9) of figure 1 may
be represented by the system below of triples from {1,2,3,4,5}.
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121 242 353 434 515
132 253 341* 425 S514*
143 231 352 415 524
154 245 312 431 523
155 211 344 422 533
145 254 321 413 532
134 213 325 451 542
123 235 314* 452 541*
112 224 335 443 551

As an aside, it may be observed that the entries 2 and 8 could be interchanged
in the four cells marked with * to produce a new triangle with the standard base
(i.e., with first a-row 1 2 3...9). This type of interchange can also be effected with
4 and 6, in each of the last three cells listed for these entries.

The row coordinates of each cell of a triangle of order n = 2 s — 1 always sum
to n+ 2. Thus if the line coordinates 1,7,k are not identical to the row coordinates,
then at most one of the corresponding row coordinates is larger than s. Using the
fact that line m consists of row m paired with row (n+ 2) — m, it follows that
exactly one of the following holds: ‘

OO WNDWN -

i+j+k=n+2o0r

i—j+korj=it+kork=1+j.

The set of all triples from {1,2,...,s} that satisfy the property above may be
called triangular triples. An LT(n) is a partition of the (n? + m)/2 triangular
triples into n sets of s triples such that in each partition set, eachof 1,2,...,s
occurs exactly once in each coordinate position.

For each n such that n + 2 is prime we can produce an LT(n) as a system
of triangular triples by permuting the line coordinates. We begin with the triples
having first coordinate 1, i.e. the cells of the first a-row of a triangle. In the
example shown here with n= 9 these cells are presented in the first column.

121 242 353 434 515
132 254 325 413 541
143 235 312 451 524
154 213 341 425 532
155 211 344 422 533
145 231 314 452 532
134 253 321 415 542
123 245 352 431 514
112 224 335 443 551
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The triples in each column are formed by replacing each coordinate in the triples
of column 1 by the corresponding entry in the appropriate column of the 5 by 5
table shown. For example, to form the third column of the triple system, we use
the third column of the square to produce 353 from 121.

1 2 3 45
2 4 5 31
352 1 4
4 315 2
51 4 2 3

In general, for n = 2s — 1, the triples with first coordinate 1 are: 121, 132,
143,..,1 s(s— 1), 1ss, 1(s — 1) s,...,123,112. Foreach i,1 < i < s, let f; be the
permutation of {1,2,..., s} defined by

iz( mod n+ 2) ifizr<s
fi(z) = . o
—iz( mod n+2) ifiz>s
and define the action of f; on triples coordinatewise. It is straightforward to show
for each triple xyz with first coordinate 1 that f;(zyz) is a triangular triple, that
{fi(zyz) : 1 < i < s} is a transversal, and that no triple appears in 2 different
_transversals. The Latin triangles constructed in this way can be shown to be the
same triangles contructed algebraically earlier in this section.

IV. Comments

We call an LT(n) symmetric about a median if there exists a pairing of entries
such that whenever a symbol 1 occurs as an entry in the triangle, its mate #/ occurs
in the corresponding position on the other side of the median. For example, the
LT(8) of Figure 2 is symmetric about its vertical median, with pairs 1 and 8, 2 and
7,3 and 6, and 4 and 5. The LT(9) of Figure 1 has three axes of symmetry. All
triangles presented in [1] and [2] are symmetric about at least one median. Figure
5 illustrates an LT(8) with no axis of symmetry.

9
5 4
4 8 5
6 5 4 3
79 81 2
231967
3128796
1 23 456 7 8

Figure 5
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The fact that line coordinates do not represent unique positions in triangles of
even order 2 s may be exploited to produce many different Latin triangles from
a given triangle. For example, the three vertices may be permuted. The other
ambiguous coordinate triples, on the outside rows of the triangle, are 1zz, zlz,
and zz1 where 2 < z < s. Interchanging the two entries in the cells in a-row
1 represented by 1z af an LT(2 s) yields a Latin triangle, as does interchanging
the entries in the cells represented by z1z or zz1. If we wish to keep a fixed
horizontal base, we may choose to interchange any of the 2(s — 1) pairs of cells
zlz or zzl1. (Interchanging both these pairs of entries of a triangle symmetric
about the vertical diagonal preserves symmetry.)

Continuing with the idea of producing different Latin triangles with the same
horizontal base as a given LT(2 s), consider the three transversals that contain
the three vertices. We may relabel all entries of one of these transversals using
any one of the three symbols appearing in these transversals and relabel the other
two transversals with the remaining symbols. Each of the 6 possible relabelings
produces a Latin triangle. Now by permuting just the vertex entries as necessary
we can restore the base of the triangle. Similarly for each of the s — 1 pairs of
transversals with entries along the base of the triangle in cells 1zz for2 < z < s,
we can relabel all the entries in a pair of transversals and then restore the base by
permuting the entries in the two 1zz cells. If s > 4 then the triangle has nontrivial
interior so that relabeling transversals is distinct from interchanging symbols on
the outside edges. Thus if there exists an LT(2s) with 2s > 8, there exist at
least 22(+-1 .6 .22-1 = 3 . 232 Latin triangles of order 2 s having the same
horizontal base.

For n= 2s = 8, a computer search produced exactly 3072 = 3 - 21 LT(n)’s
with horizontal base 1,2, 3,...,8. Thus every LT(8) may be obtained from any
other by a sequence of interchanges as described above.

Another method of producing an LT(n) from a given Latin triangle of the same
order is a form of scalar multiplication. Let0 < k < n+2 with (k,n+2) = 1.Let
* denote multiplication modulo n+ 2. If (a, b, c) is a triple of row coordinates of a
triangle of order n, then exactly one of (k*a, k*b, kxc) or (—k*a, —k*b, —k*c)
is a row triple. Define k * (a, b, ¢) to be this row triple. For example, withn=9,
4 %(2,3,6) = (8,1,2) and 5 *(2,3,6) = (1,7,3). It is straightforward to
show that if 7 is a transversal then k x 7 = {k x (a,b,c) : (a,b,c) € 7} isa
transversal. Furthermore if T is a Latin triangle then k * T is a set of transversals
which is a Latin triangle. Scalar multiplication may be applied to triangles of even
or odd order, but k » T is not necessarily different from T'.

An exhaustive computer search produced 51 Latin triangles of order 9. Each has
at least one axis of symmetry and six have three lines of symmetry. One of these
(Figure 1) is invariant under scalar multiplication. The other five Latin triangles
with three lines of symmetry are all related by scalar multiplication, as each can
be obtained as a scalar multiple of any other. The 45 LT(9)’s with exactly one axis
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of symmetry reduce to 15 equivalence classes containing a triangle and its two
rotations.

A computer search for LT(11)’s yielded one with no axis of symmetry and in
fact no median having constant entries. This is the least odd order for which either
property is possible.

In [2], for odd m, two LT(n)’s are defined to be orthogonal if upon superposi-
tion, each unordered pair of symbols occurs in some cell. For n even, the defi-
nition requires that each unordered pair of distinct symbols occurs in some cell.
This definition suffers from the fact that although

2

and
1

3 2
are related by a permutation of symbols,

1
2 3

is orthogonal to the first but not the second.

We propose a definition of orthogonal Latin triangles that is preserved under
permutations and does not distinguish between even and odd cases: two Latin tri-
angles are orthogonal if superposition produces no repeated ordered pairs. Clearly
triangles orthogonal under the definition in [2] are also orthogonal in this sense.

Since Latin triangles of orders 3 and 5 must have this form:

b e ¢ a
c a d a e b
abc and abcde

the three medians prevent the existence of orthogonal LT(3)’s and LT(5)’s. The
property of having three constant medians is shared by LT(9)’s, so there are no
orthogonal LT(9)’s. The three LT(7)’s below are mutually orthogonal using the
proposed definition, but not the previous one. -

4 3 5
53 2 4 4 6
3435 6 51 7 3 2
2176 7 3 4 2 6 4 5 1
76 4 21 517 36 25173
6 517 3 2 4 6 2175 3176 2 4

1 23 456 7 1 23 456 17 1 23456 7
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The smallest order n for which existence of an LT(») is not determined by
[1] and [2] is » = 14. We have constructed an LT(14), shown in section L. This
triangle is generated by the following three transversals in line coordinates.

Ut n K]

111 234 267
232 457 346
353 542 673
474 625 1735
565 313 122
646 166 414
727 771 551

Recall that there are six cells whose line coordinates are a permutation of 1zz,
for z # 1. The three permutations of coordinates of triples in 7; together with the
6 permutations of 7 and 73 constitute the required 15 transversals. Similarly, we
have constructed an LT(20), LT(26), and LT(32).
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