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ABSTRACT

Given an overlarge set of Steiner triple systems, each on v points, we
construct an overlarge set of Steiner triple systems, each on 2v +1 points.
Overlarge sets with specified properties can be constructed in this way;
in particular, we construct overlarge sets which cannot be derived from
Steiner quadruple systems.

1. Introduction

A t-design based on a v-set, X, is a collection of k-subsets (blocks) chosen from X
in such a way that each unordered t-subset of X occurs in precisely A of the blocks.
Such a design has parameters t—(v, k, A). A 2(v,3,1) design is called a Steiner triple
system, often denoted by STS (v), and similarly a 3~(v, 4,1) design is called a Steiner
quadruple system, SQS (v). Two t—(v, k, A) designs are said to be disjoint if and only
if they have no block in common.

If the set of all the (Z) k-sets contained in X can be partitioned into mutually
disjoint t-(v, k, A) designs (all with the same parameters), then these designs are said
to form a large set, denoted by LS(¢-(v, k, A)) or, in the case of Steiner triple systems,
by LS (STS (v)). In particular, for v even, a one-factorization of K, may be regarded
as a LS(1-(v,2,1)); it is also often denoted by OF(K,). If a t-(v, k, )) design has b
blocks, then b must divide (;2 for a large set of these designs to exist. However, even
where this condition is satisfied a large set may not exist; for example, there is no
LS(STS(7)) [4].

Whether or not a large set exists, it may be possible to pack the designs neatly by
enlarging the set of points on which they are based, sometimes by adjoining just one
extra point. Thus, if the set of all the Z) k-sets chosen from X can be partitioned
into v mutually disjoint ¢-(v — 1,k, )) designs, each missing a different point of X,
then these designs are said to form an overlarge set, denoted by OS(t-(v —1,k,1))
or, in the case of Steiner triple systems, by OS (ST'S(v —1)). We shall label the
designs of an overlarge set by their missing elements. In particular, for v odd, a near-
one—factorization of K, may be regarded as an 0S(1-(v — 1,2,1)); it is also often

denoted by NOF(K,). If a t—(v — 1,k, )) design has b blocks, then b must divide (:)
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for an overlarge set of these designs to exist. However, even where this condition is
satisfied an overlarge set may not exist; for example, there is no 05(5-(12,6,1)) [7].

Given a (t41)-(v+1,k+1,1) design, D, with ¢ = k — 1, we can form an
OS(t-(v, k,1)) by choosing, for each 7 = 1,...,v + 1, all the blocks of D containing 3,
and deleting ¢ from each of them. These k-sets form design D;, and this overlarge
set is said to be derived from D. Note that, for different values of 3, the designs D;
derived from D need not be isomorphic to each other. (This use of the term ‘derived’
is consistent with that of Rosa [6].)

This general construction shows that, for example, there is an OS (STS (v)) for
every v = 1 or 3 (modulo 6), since there is a SQS (v + 1) for every such v [1]. But
this is not the only way in which such overlarge sets arise.

In this paper, we give a doubling construction for OS (STS (v)). That is, given
an 0§ (STS (v)), we construct an OS (ST'S (2v + 1)), and show that we have a wide
choice of the substructures from which this overlarge set may be constructed. In
particular, we can insist that it not be derived from any SQS (2v + 2).

2. The doubling construction

To state the construction neatly, we introduce a small amount of notation. Let Q
be a set, @ = {q1, ..., ga}. The complete graph on n vertices is usually denoted by
K, but we use the notation Kq to indicate that the vertices are labelled with the
elements of Q. (We may label the n — 1 one—factors of a one—factorization of Kg with
any convenient symbols.) Similarly a Latin square of order n is said to be based on
Q if its rows and columns are labelled from g, to g¢,, and its symbols are those of
Q. Such a square is denoted by Lo and defines a quasigroup. Lg is said to be in
standard form if its initial column (column ¢;) contains the elements of @ in order,
that is, if Lo = [I,Q,] where I3 =ifori= Q1,92 - 5 Gn-

q

Construction. Let v = 1 or 3 (modulo 6) and let X and Y be two disjoint (v + 1)~
sets:
X={1,2,...,v+1}

and
Y ={v+2,v+3,...,20+2}.
Let
F = {Fua, Foras -, Favia}
and

9 = {621G3y"‘1Gv+1}

be onefactorizations of Kx and Ky, respectively. Let Lx = [l;‘;] and Ly = [l};
be two Latin squares of order v + 1, based on X and Y respectively, and both in
standard form. Finally, let

{A:: x€e X}

and

{ﬁ,:yGY}
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be two OS(STS (v)) based on X and Y, respectively. Let $ = XUY,s0|S| =
2v + 2. Define the following collections of triples on S.

(i) Fori =1,2,...,v+1,
& ={{u,w, 5} w,uleGandj=2,3,..,v+1}

and
D; = A;UG;.
Then (S\ {1},D;)isa STS(2v+1)fori=1,2,...,v+1.
(ii) Fori = v+2,v+3,...,2v+2
G = {{u,w,l}’j} :ju,w]€ Fjand j = v+3,v+4,‘..,2v+2}
and
D; = B;UG;.
Then (S\{:},D;)isa STS(2wv+1)fori =v+2,v+3,...,20+2.

Then an OS (STS(2v + 1)) based on S can be constructed by taking the following
collection of STS (2v + 1):

(S\{:},D) fori =1,2,...,2v+2.

To show that this collection of 2v + 2 STS (2v + 1) forms an OS (STS (2v + 1)) we
show first that we have 2"; %) triples and secondly that no triple is repeated.

To count the number of triples, note that in collection (i) of triples, we have the
(";1) triples chosen from X and the ("—';l)v(v-i- 1) triples constructed from G and Ly,
and in collection (ii) we have the same number of triples again. That is, we have

altogether
v+1 2 _ [2v+2
2( 3 )+v(v+1) _( 3 )

triples, as required. So provided no triple is repeated, all are used, and the designs
are pairwise disjoint.

Now we check that no triple is repeated. We are given that all triples in A; and
B; are distinct. This accounts for all triples in X or Y. Additional triples are either

of the form {z, ya, ys }, where £ € X and ya,ys € Y (in Dy, D2, ..., Dys1), or
{2a, zg,y}, where z,,25 € X and y € X (in Dyya, Dusa, -+ , Dauvsa), so there
is no repetition between these sets of triples. But within {D;, Da, ..., Dyy1 } or

{Dus2, Dot3, -, Davsa, } each edge of K is paired with each point of Y, and vice
versa. So all of the triples are distinct.
This completes the proof that we have an 0§ (STS (2v + 1)).

Example 1. Let v=3, X = {1,2,3,4}andY = {5,6,7,8}. Let

5 = {{12, 34}, {13,24}, {14, 23} }
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and
= {{56,78},{57,68},{58,67}}.

Then F and § are one—factorizations of Kx and Ky, respectively. Let

Ly = and Ly =

w»wWwN -
=abwN
N = ab W
W N =

Then Lx and Ly are two Latin squares of order 4, based on X and Y respectively,
and both in standard form. Finally, consider { Ax : x € X } where

Ay = {234}, A; = {134}, A; = {124}, A4 = {123}
and{ﬁ, : yEY} where
Bs = {678}, Bs = {578} ,B; = {568} ,Bg = {567} .

Then {A; : x€ X } and {3, Ty € Y} are 0S(STS (3)) based on X and Y, respec-
tively. The OS (ST'S (7)) obtained using the above construction is shown in Table 1.
It is isomorphic to the overlarge set E in (8], by the mapping (164532).

D; Dg Ds D4 Ds DG D7 Da

234 134 124 123 678 578 568 567
256 356 456 156 612 512 812 712
278 378 478 178 634 534 834 734
357 457 187 257 713 813 513 613
368 468 168 268 724 824 524 624
458 158 258 358 814 714 614 514
467 167 267 367 823 723 623 523

Table 1: An OS (ST'S (7)) constructed from two OS (STS(3))

3. Non-derived overlarge sets of Steiner triple systems

Note that there is no special relationship between the one-factorizations, F and §,
the Latin squares, Ly and Ly, or the two OS(STS (v)) based on X and Y. This
allows us great freedom in constructing overlarge sets; in particular, we now construct
some which cannot be derived from Steiner quadruple systems. The case v = 3 is of
course an exception: the only possible OS (STS(3)) is derived.

If the block bed belongs to the design D, in a derived OS (STS (v)), then the
block abed belongs to the SQS (v + 1) from which it was derived. This means that
the design D, contains the block acd.

If we choose at least one of the Latin squares in the doubling construction to be
back—circulant, then the overlarge set that we obtain cannot be derived. For if, say,
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Ly is back—circulant, and if the first edge in the one—factor G,4; is y1y2, then the
design D, contains the block 2y,y, but the block ly,y2 occurs in the design Dyyy. In
Example 1, we see that in particular, the block 256 belongs to D; and the block 156
to Dq.

This still leaves open the question of whether non-derived OS (ST'S(v)) exist
in general, that is, including the cases which cannot be found from the doubling
construction. Certainly there are 77 non-isomorphic OS (ST'S (9)) [9] and only one
of these (# 77) is derived. Further, if S is the set S ={1,...,9,4, ..., E}, then
the following ST'S (13), based on the set S\ {A}, can be developed cyclically modulo
14 to give an OS (ST'S(13)), based on S, which is not derived.

123 346 458 4DE 16E 67D 178 6BC 8CD 256 689 1BD 9BE
57B SCE 28E 24B 35D 479 14C 37E 39C 38B 29D 159 27C

In the overlarge set, this will be the design Dy and it contains the block 6BC. Hence
if the overlarge set were derived, the design Dp would contain the block 6AC. But in
fact, since 35D belongs to D, and since the overlarge set is cyclic, 6AC belongs to Ds.
(The 70 non-isomorphic cyclic 05 (ST S (13)) are classified in [10].)

To show that non-derived OS5 (STS(v)) exist for all v = 1 or 3 (modulo 6) we
now apply the following result, found by Hartman [2] and subsequently proved more
simply by Lenz [3].

Theorem 1. A Steiner quadruple system of order v + 1 which is an extension
of a Steiner quadruple system of order 8 exists for all v = 1 or 3 (modulo 6) and
v#1,3,9 or 13.

The OS (STS (v)) derived from such a SQS (v + 1) has eight ST'S (v), say, C; for
i1=1,..., 8, each containinga STS(7) & on {1, ..., 8}\{z} These eight subdesigns
Eifori=1,...,8 together form a 0S(STS(7)). We may now substitute for each
& the corresponding design D; of the OS (STS(7)) given in Table 1. Since that
overlarge set is not derived, neither is the resulting OS (STS (v)), completing the
proof of

Theorem 2. For every v = 1 or 3 (modulo 6), there exists an OS (STS (v))
which is not derived from a SQS (v +1).

4. The smallest examples of the doubling construction

The smallest case of the doubling construction starts from an OS (ST S(3)) and gives
an OS (STS(7)). There are precisely eleven non-isomorphic OS5 (STS (7)) (8] and
we show that seven of them can be obtained by doubling. First we recall from (8] the
function f : (:) — (:) given by f({z1, 22, z3, 4}) = {¥1, ¥2, ¥3, ya} where, for
i=1,2,3,4, y; is defined by {z:, z2, 23, 24} \ {z:} € D,;. Therefore in a derived
OS(STS(7)), every quadruple of the corresponding SQS (8) is fixed by f, and in
an OS(STS (7)) from the doubling construction, the sets X and Y are fixed by f.
Since the overlarge sets B, F, G and K have no blocks fixed by f, they cannot be
constructed by doubling. The other seven overlarge sets can be, as shown in Table 2.
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Since overlarge set A is derived from a SQS (8), each of its blocks is fixed by f,
and only one possible choice of X and Y is shown. For the other overlarge sets, all
possible choices of X and Y are given, that is, three each for D and E and one each
for the others.

0S(STS(T)| X 9 Ly |{A:-:zeX}
Y S Ly {3y:yEY}

{12 38} 1832 {238}

i R =
{18 23} 8123

{123}

{45 67} 4765 {s67}

{4,5,6,7} {{46 57}} R R Rt

{47 56} 7456 {456}

{12 56 1265 {256}

¢ {1,2,5,6} { {15 261 } 265, { ﬁi:}

{16 25} 6512 )

{125}

{34 78} 3874 {478}

(3,4,7,8) {{37 48}} 2130 | e

{38 47} 8347 {347}

{12 56} 1256 {256}

o Joasa| ({25 HE ] |12
{16 25} 6125

{125}

34 78 3478 {a78}

{3,4,7,8) {Esw 48i} 11330 e

{38 47} 8347 )

{347}

Table 2: The OS (STS(7)) obtained by using the doubling construction. Labels are
those of [8].
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00 N Ww DANN =
~N 00 Wb AN—
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{246}
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|
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|
|
|

~NOW e
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{

{

{

{24 68
{2,4,6,8} { {26 48

{28 46

XYYV
Vb ®
w0 o

Table 2: (cont’d) The OS (ST S (7)) obtained by using the doubling construction.
Labels are those of [8].
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Table 2: (cont’d) The OS (STS(7)) obtained by using the doubling construction.
Labels are those of [8].
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