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Abstract. We show that for all odd m, there exists a directed m-cycle system of D,
that has an | m/2 | -nesting, except possibly whenn€ (3m + 1,6m + 1}.

1. Introduction.

Let K, be the complete graph on n vertices. An m-cycle of a graph G is an
ordered m-tuple (vo,v1,... ,vyu_1) such that vu;,, for0 < i < m—1isan
edge of G (where subscripts are reduced modulo m). An m-cycle system of K,
is an ordered pair (V,C) where V is the vertex set of K, (son = |V|) and C is
a collection of edge-disjoint m-cycles of K, which induce a partition of E( K,
(E(K,) is the edge set of K,,).

Let (vo,v1,... ,vpm-1; w) denote the star which joins w to each of the vertices
vo,V1,...,VUm—1. A nesting of the m-cycle system (V,C) of K, is a function
a:C — V such that C(«) induces a partition of E( K,,), where C(a) is the set
of stars defined by )

C(a) = {(vov1,... ,vm-1; a(c)) | c=(vo,v1,...,vm-1) €C}.

Whether or not an arbitrary m-cycle system can be nested is an extremely difficult
problem. However, it would seem tractable to consider the problem of finding
the set of values of » for which there exists a nestable m-cycle system of K.
A simple counting argument shows that a necessary condition for a nestable m-
cycle system of K, to existis thatn=1 (mod 2m). In the case where m = 3,
this problem has been completely settled (this is precisely the nesting problem for
Steiner triple systems) [2, 8], the set of possible values beingalln=1 (mod 6).
More recently it has been shown that [5] for any odd value of m, with at most 13
possible exceptions the necessary condition is also sufficient, and for the particular
case when m = 5 there are no exceptions. This nesting problem for even length
cycles is essentially solved, since for any even m > 4, with at most 13 exceptions
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for each value of n, there exists an m-cycle system of K, n = 1 (mod 2m)
which has a nesting [7, 9].

In this paper, we introduce analogous problems for directed m-cycle systems.
Let D, be the complete directed graph on n vertices. A directed m-cycle of a
directed graph G is an ordered m-tuple (vo, v1,... ,Um—1) such that (v;, vis1) is
anarc of G for 0 < i < m — 1 (reducing sub-scripts modulo m). A directed
m-cycle system of D,, is an ordered pair (V, C) where V is the vertex set of D,
(so n= |V|) and C is a set of arc-disjoint directed m-cycles of D, which induce
a partition of A(D,) (A(D,,) is the set of arcs of D,). There are clearly several
ways to define a nesting of a directed m-cycle system as the edges in each of the
stars can be oriented in different ways. Perhaps the most satisfying problem would
require that for some fixed z,0 < z < m, each directed star used in the nesting
has exactly z arcs directed in and m — =z arcs directed out of the centre vertex.
Therefore, define (vo,vi,...,Yz—15 Yz, Vz+l,... ,Um—1; W) to be the directed
(z, m)-star in which (v;,w) isanarc for0 < i < = —1 and (w, v;) is an arc for
z < 1 < m— 1. Then define an z-nesting of a directed m-cycle system (V, C) of
D,, to be an ordered pair («, S(«)) where « is a function a: C — V and S(«)
is a set of directed ( x, m) -stars defined by

S(@) = {(Une(0)s Um(1)s -+~ » Vm(z=1)} Vme(z)s -+ » Vm(m—1)s @(C)) |
c= (vo,...,vm-1) €C}

for some permutations =, of {0,1,...,m— 1}, c € C, such that S(«) induces a
partition of A(D,).

Example 1.1: Letn =5 andn= 6. Then

€={(5,0,1,3,2,(5,1,2,4,3),(5,2,3,0,4,(5,3,4,1,0),
(5,4,0,2,1),(0,3,1,4,2)}

is a directed 5 -cycle system that has a 1-nesting defined by

S(a) ={(1;5,3,0,2:4),(3;1,5,2,4;0),(4:2,0,3,5; 1),
(5:3,1,4,0,2),(0;4,2,5,1;3),(2;0,4,1,3;5)}

and a 2 -nesting defined by

S(a) ={(5,3;0,2,1;4),(1,5;2,4,3;0),(2,0;3,5,4; 1),
(3,1;4,0,5;2),(4,2;5,1,0;3),(0,4;1,3,2;5)} .

A simple counting argument shows that a necessary condition for the existence
of adirected m-cycle system of D,, that has an z-nesting is thatn=1 (mod m).
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It is the object of this paper to show that if m is odd then this is also a sufficient
condition, with at most 2 possible exceptions, in the case when z = |m/2].

It is worth noting that if every arc in an z-nesting of a directed m-cycle system
is oriented in the opposite direction then a (m — z)-nesting results, so it suffices
to consider this problem for 1 < z < [m/2].

Finally, notice that if we ignore the directed cycles then what remains is a de-
composition of D,, into directed ( z, m) -stars. It is only recently [1] that the prob-
lem of finding such decompositions has been found whenn =0 or1 (mod m)
for all z, the case when n = 0 (mod m) now being possible since the condi-
tion of the directed stars arising from a nesting is no longer imposed. Even more
recently, this decomposition problem has been completely solved [3].

Throughout the rest of this paper, we assume that m is odd. Let Z,, = {0,1,...,
m—1}. .

2. Directed m-cycle systems with | m /2 |-nestings.

Lemma 2.1. For1 < z < |m/2] there exists a directed m-cycle system of
Dya41 that has an x-nesting.

Proof: Define a directed m-cycle on the vertex set {oco} U Z,, by

a = (ap,a1,...,am—1) Where

ag = 00,

aj= (~1)7|j/2] for 1<j<|m/2], and
amg = (=D |m/2] + (=17]j/2] for 1<j< |m/2).

Leta+ 1= (ap +1,a; +1,... ,a,-1 + 1), reducing each component modulo
m and defining oo + ¢ = oo. Then we can define a directed m-cycle system
({00} U Z,,,C) as follows: if m =1 (mod 4) then define

C={a+i|0<i<m—-1}u{(0,[m/2],2[m/2],...,(m—1)[m/2])}
andif m =3 (mod 4) then define
C={a+i|0<i<m—-1}uU{(0,|m/2],2|m/2],... ,(m—1)|m/2])}.

To nest these directed m-cycle systems, begin by renaming oo with m, so the
vertex set is now Z,,,1. Of course in this case, for each ¢ € C, a(c) is the unique
vertex that is not in ¢c. Define

s=(1,—1,... Jz/2),-l2/2]), (m+ 1) /25 1+|2/2],«1+|2/2)),...,
[m/2j,—|_m/2_|; 0)

if z is odd, and
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s=(1,1,...,5/2,~x/2;14+2/2,~1-x/2,... ,|m/2],—|m/2],(m+ 1)/2;0)

if z is even.

Define s + 1 to be formed by adding ¢ (modulo m + 1) to each component of s.
Then S(a) = {s+1i | 0 < i < m} is an z-nesting of the directed m-cycle system
(Zm+l;C) 0fDm+l- 1

The directed 5-cycle system together with the 1-nesting and 2 -nesting in Ex-
ample 1.1 illustrate the construction in the proof of Lemma 2.1 (with co being
replaced by m = 5 throughout).

Lemma 2.2. For1 < = < |m/2] there exists a directed m-cycle system of
Dy pm+1 that has an z-nesting.

Proof: Letm =2y+ 1 andsoasz < |[m/2], z < y. Define

a=(1,2,...,(-)¥y, (-DY(y+ 1), (D (y+2),... ,(-1)?¥(2y+ 1))

where each coordinate is reduced modulo 2m + 1 and define ¢; = —c; (where
—c; is formed by multiplying each component of ¢; by —1 modulo m). Also
define

+1,2,...(-1)%z; (D)= (z+1),...,(-DYy, (-D¥(y+1),...,

] D (2y+1);0) ifr<y
TE) (1,2, (D% (DA 1), ., (1) 292+ 1)50)
fr=y

and s; = —s1.

Then C = {c1 + 1,c2 + i | 0 < 1 < 2m} is a directed m-cycle system and
S(a) = {s1 +1,32 +1i| 0 < i < 2m} is an z-nesting of the directed m-cycle
system (Zzm+1,C) Of Dypys1. |

For example, Lemma 2.2 produces the directed 5 -cycle system ( Zy1, C) where

C={(10+14,2+14,3+14,7+14,5+1) |0<i< 10}
that has a 1-nesting defined by
S(a) = {(10+§;2+14,3+4,7+14,5+4; i) |0 <i < 10}
and has a 2 -nesting defined by

S(a) = {(10+14,2+ 4;3+14,7+14,5+1; 1) |0 <i<10}.
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Define an m-nesting sequence d=(do,d1,... ,dim/2)) by di=(—1)"*! |(i+
1) /2] (mod m). This sequence has two relevant properties. Let D(i, ;) =
min{i—j (mod m),;j—1i (mod m)}. Then this m-nesting sequence d satisfies

{D(di,di-1) |1<i< m/2]}={1,2,...,[m/2]}, and ()
{D(d[m/ZJ)di) IO <i< l_m/ZJ} = {1,2,... sl_m/ZJ} @)

It will be convenient to denote the directed m-cycle

(y,do) o o (2,do)
(y,d1) o o (z,d1)

(y,d2) o * (z,d)

(2,d|ms2)-1)
. (r,d\m/2))

(v, @mp2)-1) @

by (v,2,75 do,di,...,djm2))-
Finally, we need a pair of orthogonal idempotent quasigroups. These exist for
all orders except 2,3, and 6. '

Theorem 2.3. Foralln=1 (mod m) except possiblyn € {3m+1,6m+1},
there exists a directed m-cycle system of D, that has a | m/2 | -nesting.

Proof: Letn=ms+ 1 wheres ¢ {2,3,6}. Let (Z,,01) and (Z,, 02) be a pair
of orthogonal idempotent quasigroups of order s.
Define a directed m-cycle system ({oo} U(Zs X Zpy), C) of D,, as follows.

(1) Foreach r € Z, define a copy of an |m/2 |-nestable directed m-cycle
system of Dy, on the set of vertices {oo} U ({r} x Z,,) (see Lemma 2.1)
and place these directed m-cycles into C.

(2) Fori € Zpm,y € Z,and z € Z,, y # 2, place the directed m-cycle
(v,2,y012; do +i,dy +1... yd{my2) + 1) into C (reducing all the com-
ponents d; + 1 modulo m).

By using property 1 of an m-nesting sequence, it is straightforward to check
that ({00} U(Z, x Zn),C) is a directed m-cycle system. It remains to show
that it has an | m/2 | -nesting.

(1) Foreachr € Z, let (ay, Sy(ay)) be an | m/2 |-nesting of the directed m-
cycle system placed on {oo} U ({r} X Z).
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(2) Fori € Zy,y € Z,,z € Zs,y # z define

a((y,z,y01 2; do +1i,... ,djm2) + 1)) = (Y02 2,d{m2 + %)

and define the corresponding directed ( z, m)-star by

Sty = ((v,do +9),(y,d1 +9) ..., (9, dpmy2j—1 + 9, (Y O1 2,d|mp2) + 1);
(2,do+19),...,(2,d|m2)-1 + 15 (Y02 2,d|mp) + 1)) .

Then the set consisting of the directed stars in the sets S, r € Z, together with
S(yz) fOry # 2,y € Zs, 2 € Z,, % € Zy, form an | m/2 | -nesting. To see this we
should find the directed stars containing the arcs ((a, j), (b,)), ((a,7),(a, k))
and ((a,j),(b,k)) fora # band j # k.

Since (Z;,01) and (Z,,0;) are orthogonal, for some y and z, y 0y 2 = a and
" yoz z=b. Also, there is an i such that d, 2| + 1 = j. Then ((a, ), (b, 7)) isin
the directed star s¢,, . ).

Clearly, ((a, j), (a, k)) is in one of the directed stars in S, (a,).

Finally, by property 2 of m-nesting sequences, there exist values d, and 1 such
thateither d, + i = j and d|py2) +i = kord, + i = k and d, 5| +i = j (but
not both). In the first case, let a o 2 = b, then ((a, j), (b, k)) is in s¢5 5. In the
second case, let z o3 b = a, then ((a, j), (b, k)) is in 8¢z p,4).

The theorem now follows using Lemma 2.1 and Lemma 2.2. 1

Finally, we remark that several problems remain open.

(1) Find adirected m-cycle system that has an z-nesting for1 < z < |m/2|—
1, and for z = |m/2 | when m is even.

(2) Find a directed m-cycle system of D, that has an |m/2 |-nesting when
ne{3m+1,6m+ 1}.

3. Acknowledgement.

Research of the authors is supported by NSA grant MDA-904-89-H-2016 (CCL
and CAR), NSF grant DMS-8703642 (CCL), NSF grant DMS-8805475 and NSERC
grant A9287 (DRS).

158



References

1. P.V. Caetano and K. Heinrich, A note on distar-factorizations, Ars Combina-
toria, 30 (1990), 27-32.

2. CJ. Colbourn and M.J. Colbourn, Nested triple systems, Ars Combinatoria,
16 (1983), 27-34.

3. CJ. Colbourn, D.G. Hoffman, and C.A. Rodger, Directed star decomposi-
tions of the complete directed graph,. (submitted).

4. C.C. Lindner and C.A. Rodger, Nesting and almost resolvability of pentagon
systems, Europ. J. Comb. 9 (1988), 483-493.

5. C.C. Lindner, C.A. Rodger, and D.R. Stinson,, Nesting of cycle systems of
odd length, Discrete Math. 77 (1989).

6. C.C. Lindner and D.R. Stinson, The spectrum for the conjugate invariant
subgroups of perpendicular arrays, Ars Combinatoria 18 (1983), 51-60.

7. C.C. Lindner and D.R. Stinson, Nesting of cycle systems of even length,
JCMCC 8 (1990), 147-157.

8. D.R. Stinson, The spectrum of nested Steiner triple systems, Graphs and
Combinatorics 1 (1985), 189-191.

9. D.R. Stinson, On the spectrum of nested 4-cycle systems, Utilitas Math, 33
(1988), 47-50.

159



