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1. Introduction

We assume the standard ideas of graph theory. A one-factorin a graph G is aset of

edges of G which together contain each vertex precisely once. A one-factorization
is a set of disjoint one-factors whose union is the original graph.

In order to have a one-factor it is necessary that a graph have an even number
of vertices, but this is not sufficient. There have been many papers written on
the existence of one-factors; Tutte’s famous paper [14] presents a necessary and
sufficient condition. The problem of whether or not a given graph has a one-
factorization is even more difficult. However, it is easy to see that the complete
graph K, has a one-factorization for every positive integer n. For an excellent
survey on one-factorizations of the complete graph, we refer the reader to [11].

The standard proof that K, has a one-factorization goes as follows. First,
take the vertices of K, as {00,0,1,2,...,2n— 2} where the elements are the
integers modulo 2 n— 1 except that oo is a new element satisfying the law “co+ 1z =
oo”. Then select a particular one-factor Fy with edges:

(oo,O),(l,—l),(Z,—Z),...,(n— l)n)-

(This factor is easiest to understand geometrically, using the picture in Figure 1.)
Finally, factor F; is constructed from Fy by the rule “add ¢ to each vertex”. F; has
edges

(00,9),(14+14,—-141),(2+1,-2+1),...,(n—1+14,n+1).

(Again the geometric picture is very simple: rotate the diagram of Figure 1 clock-
wise through 1 positions.) It is easy to check that {Fy, Fy, F3, ..., F2,-2 } consti-
tute a one-factorization of K. This particular factorization is called the patterned
factorization, and denoted G K5 ,.
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Figure 1

Another one-factorization of K, is frequently used. The definition varies, de-
pending on whether n is even or odd. In either case the factorization is denoted
G4z, 2]

To construct GA,,,, one first partitions the vertex-set of K, into two sets of
size n: for convenience, say they are {0,1,2,...,n— 1} and {0,1,...n—1}.
Fori=0,1,...,n—1,let H; denote the one-factor with edges (0,7),(1,1+ 1),
.eoy(n—1,n—1+ 1) (where all arithmetic is performed modulo n). Then ob-
serve that the n one-factors Hy, Hy,..., H, 1, precisely cover all the edges join-
ing the two sets of vertices.

Suppose nis even. Let { Fy, F1, ..., Fy2 } be the factors of G K, on the sym-
bol set {0,...,n— 1} and {Fy, F{,...,F}_, } be the same factors with each
symbol z replaced by the symbol Z. (The symbols n— 1 andn— 1 can by treated
as the oo symbols.) Then

(FoUFER),(FLUF),...,(Fua UF,,),Ho,Hy,...,Hoy

constitute GAz,. For odd n, GA,,, is defined similarly. (See Section 6.)

A one-factorization of K>, is called perfect if the union of any pair of factors is
always a Hamiltonian cycle in K, ,,. Weknow that G K>, is perfect when2n—1 is
a prime, and G A;,, is perfect when = is prime. These are the only known infinite
families of perfect one-factorizations, although other “sporadic” examples have
been found (see [6]). A motivation for our discussion of this new invariant is that a
commonly used invariant (using cycle structure) is totally ineffective in discerning
nonismorphic perfect one-factorizations.

In this paper we will discuss an invariant of one-factorizations of K, called the
train. In Section 2 we describe this invariant and give some examples. In Section 3
we prove a theorem concerning the length of this invariant. Section 4 introduces
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another class of one-factorizations as motivation for the use of trains. In Sections 5
and 6 we explicitly compute the trains for GK,, and GA,, (n odd) respectively.

2. Trains

We are interested in describing one-factorizations of K3, and in distinguishing
between nonisomorphic one-factorizations. Initially this was achieved by looking
at cycle-structure, in the following sense. Each one-factorization consists of 2n—
1 factors. If these are paired, one constructs (2n — 1)(n — 1) regular graphs of
degree 2. In the case of K, one can distinguish between the isomorphism-classes
of one-factorizations simply by counting how many of these graphs consist of two
4-cycles. In [17], two factors are called a pair if their union is not connected;
three factors form a division if the union of all three is not connected. The pair
and division structure is very useful in computing the automorphism groups of
factorizations, and is also used in [17] to calculate automorphism groups of Room
squares of side 7.

The cycle structure is not so useful in Ko, because of the large number of
nonisomorphic one-factorizations (396 of them). Gelling [8] counts the cycles
through a vertex. In each of the 36 graphs obtained by taking a union of two
factors, a given vertex lies in a 4-cycle, a 6-cycle or a 10-cycle. One can count
how many times this occurs for each vertex. Such a count is more useful, but still
far from ideal. In particular, cycle structure cannot possibly distinguish between
nonisomorphic perfect factorizations.

Kotzig [10] introduced another way of distinquishing between one-factorizations.
With each one-factoriza- tion F of K, associate 2n idempotent quasigroups
Q(F,v), one for each vertex v of K»,. The multiplication in Q(F,v) is de-
fined as follows: aa = a, and if a # b then ab = ¢ where (a,c) and (b, v) lie in
the same one-factor of F. Then Q(F,v) induces a set of cycles (a1, a2, a3, - o)
by the iterative process ajaz = a3, @283 = G4,..., @iGi+] = Gi42.

For a given v, the set of cycles partitions the edges of the K,,-1 obtained by
deleting v. The lengths of these cycles form an invariant.

Anderson [1] used the Kotzig invariants to study one-factorizations arising from
starters in cyclic groups (that is, one-factorizations derived by rotating a diagram
in the same way that GK,, is derived by rotating Figure 1). In particular, he
applied them to some small perfect one-factorizations.

Another invariant was used by Gross [9]. This invariant was easy to compute,
however was only defined for one-factorizations arising from starters in Abelian
groups. It also sometimes distinquishes between perfect one-factorizations.

In this paper we will discuss an invariant of one-factorizations called trains.
These were first introduced by White [18], and later used by Colbourn, Colbourn
and Rosenbaum [4] and by Stinson [13], in discussing Steiner triple systems.
Trains of one-factorizations were first discussed by Dinitz [5].
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Suppose F = {F\,F,,...,F>,1} is a one-factorization of K,,. The train of
F is a directed graph whose vertices are the n(2n— 1)? triples {z,y, F'}, where
z and y are (an unordered pair of) vertices and F' is a factor in F (i.e. F' = F; for
some 1). There is exactly one edge leaving each vertex; the edge from {z,y, F'}
goes to {z,t, G} where:

(z, 2) is anedge in F;
(y,t) is anedge in F;
(z,y) isanedgein G.

We will sometimes think of this edge as a self-mapping ¢ on the vertices of the
train where ¢(z, y, F) = (2,t,G). Itis obvious that isomorphic one-factorizations
have isomorphic trains.

Following [13] we simplify trains by considering only the indegree sequence of
the train. That is, with a one-factorization F we associate the sequencetg, 1,13, ...
where ¢; equals the number of vertices in the train of F which have 1 edges di-
rected into them. The sequence is normally written so as to terminate with the last
nonzero element.

The sequence of indegrees allows us to separate many factorizations. In partic-
ular, Dinitz [5] uses it to prove that two perfect factorizations of K, are noniso-
morphic— the two sequences were (330,176,165,0,55) and (110,506, 110)—
and to separate three nonisomorphic perfect factorizations of Ky and five of K4.

In the Appendix we list the indegree sequence for the train of each one-factori-
zation of K, for2n = 8 and 10. Note that these trains form a complete invariant
for 2n = 8 and almost a complete invariant when 2n = 10. (Only the trains of
one-factorizations numbered 16 and 26 have the same indegree sequence.)

3. The Maximum Length of a Train

One might think that the length of (the indegree sequence of) a train could be
extremely long. There are n(2n — 1) 2 vertices in the train of a one-factorization
of K5, so an arbitrary digraph with all outdegrees 1 could have a vertex with in-
degree as large as n(2n— 1)2. However, the maximum indegree is much smaller.

Theorem 1. The train of any one-factorization of K1, has maximum indegree
2n-1.
Proof: Given a vertex {z,t, G}, assume there are edges directed into it from both
{z,y, F} and {u, v, F'}. Then z is joined to one of {z, y} and to one of {u, v} by
an edge of F',and soist. So {z,y, F} = {u,v, F} and thus there can be at most
one edge into {z, t, G’} for each factor F in the one-factorization. Therefore, each
vertex in the train has maximum indegree 27 — 1.

In the case of a perfect one-factorization we can say more.

Theorem 2. The train of a perfect one-factorization of K, has maximum inde-
green, forn> 2.
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Proof: Suppose there is an edge {z,y,F} — {z,t,G} in the train of a perfect
one-factorization of K ,. Then xy is an edge of G, and either {zz, yt} or {zt, y=}
belong to F — say the former case. If there were an edge from {z,y, F1} to
{z,t,G} where F; # F, then zt and yz must be edges of Fi. Then F U F}
contains a 4-cycle, which is impossible when n > 2. So there is at most one edge
into {z,t, G} for each edge zy of G.

The maximum indegree 2n — 1 can be realized for nearly all orders 2n. To
prove this we need a definition. Suppose R = {1,2,...,r}and $1,85,,...,5k
are sets which form a partition of R. By an incomplete Latin square of side r with
holes S1,S3, ..., Sk we mean an r x r array with the following properties:

(i) if {1,7} C S for some k, then the (4, ;) cell is empty; otherwise it contains an

element of R;

(i) if i € Sk, thenboth row 1 and column 1 contain every element of B\ S precisely
once.

Suppose A = (a;;) is an incomplete Latin square of side 2n — 2 with holes
{1,2},{3,4},...{2n—3,2n—2}, and further suppose A is symmetric. Define

Fo = {000, 12, 34,...,(2n—3)(2n—2)}

and wheni > 0

Phicy = {oo(2i — 1), 0(2)} U {2y : agy = 2i— 1},
Py = {00(29), 0(2i — 1)} U {zy: azy = 24},

Then {Fp, Fi, ... Fan_2 } is a one-factorization of K, and {co,0, Fp } has inde-
gree 2n—1 in the train. Fu [7] has proven the existence of a symmetric incomplete
Latin square of side 2n— 2 with n— 1 holes of size 2 whenever2n—2 # 4,50
we have

Theorem 3. There is a one-factorization of K5, whose train has a vertex of in-
degree2n— 1 whenever2n # 6. ’

The unique one-factorization of K¢ has no vertex of indegree 5 in its train, so
the situation is completely determined.

Also note that in Ko, the trains of one-factorizations numbered 1 through 5 all
have a vertex with indegree 9. (See Appendix)

4. Staircase Factorizations

A practical example of the use of trains occurred in the case of staircase factor-
izations. Following the appearance of [15], F. Bileski [3] outlined a new way to
construct a one-factorization of K. His technique is as follows. (See also [16]).

First, write down a diagram of cells, with 2 n— 1 rows and columns. If this were
a square array, only the cells on or above the back diagonal would be included.
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Rows are labeled 2%,2n— 1,...,2 and columns 1,2,...,2n— 1. (This can
be done with a single labeling, as shown in Figure 2: the label encompasses the
column above it and the row to its left — there is, for example, no row labelled 1
because label 1 is below all rows.)

Now construct » paths of cells. Path 1 is vertical, pointing north, on the west
side. Path 2 starts from the extreme east, moves one square west, then southwest
as far as possible without meeting Path 1, then south for one cell.

/10

2 Figure 2

Every subsequent path meets the following description. Path 4 starts in the cell
diagonally adjacent to the end of path i— 1. Proceed northwest until itis impossible
to proceed further (one would either cross Path 1 or escape from the diagram). It
turns 45° and proceeds one step (it will either be possible to proceed north or to
proceed west or north, but not both, so this instruction is unambiguous). Then
turn a further 45° and go as far as possible. Turn a further 45° and move one cell.
Turn a final 45° and go as far as possible.

These instructions sound complicated but are easy to follow. Path 1 is special.
After that, odd-numbered paths go

NW as far as possible
N one step

NE as far as possible
E one step

SE as far as possible.

Even-numbered paths have the same description, except that the order of direc-
tions is NW, W, SW, S, SE. If we numbered the back-diagonal cells from 1(SW)
to 2n— 1(NE), then if i > 2

for 1 odd, path 1 goes from cell i tocell2n+ 1 — 4
for i even, path  goes to cell i from cell2n+ 1 — 1.
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The labeling and the construction of paths is illustrated in Figure 3 for the case
2n= 10. Paths are shown as lines joining the centers of the relevant cells.

To form a one-factorization, identify each cell of the staircase diagram with the
unordered pair given by its coordinates. The first factor consists of the n pairs
which are the first elements of the = paths, the second elements give the second
factor, and so on.

It is naturally of interest to determine whether or not this factorization is differ-
ent from the two main classes discussed earlier. Initially we could not decide this,
so some experimental work was done. It was found that the trains of the staircased
factorization and the patterned factorization are the same for all 2n < 36. Using
information from the calculation we constructed the following proof.

Theorem 4. The staircase factorization is always isomorphic to the patterned
factorization.

Proof: For convenience we decreased the row and column numbers by 1. Then
reverse the order of the odd labels, as shown in Figure 4. One can interpret the
labelsas 0,—-0,2,—2,...(mod 2n— 1) if preferred.

The starting point of a typical path (other than the first) is in row k, column
—k. As one moves along the path, one gets cells and in general after 2 h — 1 steps
comes cell (2h — k, k + 2h); after 2h itis (k — 2h,—k — 2h). So the sum of
the two coordinates of the cell after 2 h — 1 steps is 4 h; the sum after 2 h steps is
—4h.

So the one-factor consisting of entry 1 from each path is the one-factor consisting
of all the pairs with the same sum (21 + 2 if 1 is odd, —21 if 1 is even). The
contribution from path 1 is consistent (i+ 1, —i respectively). These are the factors
of GK3,. So the staircased factorization is isomorphic to GK>,,.
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5. The Train of GK,,,

In this section we will determine the indegree sequence of the train of the patterned
one-factorization G K, on the graph K,. This one-factorization was described
in the introduction, but we will define it again below in an equivalent (but different
looking) manner. The patterned one-factorization on K,,, may be defined by

GKyn={F,Fs,...,Fon }, where
Fy={00,i}U{{z,y}: z+y=2i}.

(All arithmetic is modulo 2n — 1.) We will use the following notation: let I =
{1,2,...,2n—1},J = IU{oo},and I, = I\{z}. AlsoletS = {(z,y, f):z,y,f €
I,y>z},8 ={(o0,y,f):y,f €I},and V = SUS'. We will let f denote the
1-factor Fy, where f € I.

The train of GK,, is a digraph whose vertices are the elements of V and whose
outdegrees are all 1. The arcs can therefore be interpreted as the diagram of a
mapping V — V. The map is ¢; U ¢2 U ¢3 U ¢4 where:

¢1:(OO,$,I)—)(OO,$,I) ZGI)
¢2:(°°)z)f)_’(fs2f~z)z) fEI,IEIf,
¢3: (54,3 = (00,22-9, ) zelyel, and

bai (0,0 = (2f-52f -9, DY) felselyel,

Observe that ¢4 is a 1 — 1 map from S onto itself. So the image of ¢4 on its
domain is S\T, where T = {¢4(z,y, f):zory=f,1<z<y<2n—1}.

168



Two easy alternative descriptions of T" are

T ={(f,2f-y, f—;:—y): felye Iy}

={(3f-29,fi,9:9€I fe€L}

In what follows we use the words “image of ¢;” to mean the collection of all
¢i(z, y, f) which are defined, with multiple elements counted multiply. We ob-
tain the following images for the mappings ¢, ¢, and ¢3.

Imageof ¢ = P ={(oo, z, 7): = € I}.

Imageof ¢ = Q ={(2f -z, f,z): f €I,z € I}
={(2f -1z fiz):z €I, fe€l}
Imageof¢3 = R = {(oo, 2z — y,z—;—!’—'): ze I,y € I}

{(00, 4g - 3!/, g): g € I) y € Ig}

The trainhasimage Z = P+ Q + R+ S —T.Ifwelet P, = {elements of
P withlastentry z }. Thenclearly Z, = P; + Q;z + Rz + Sz — Tz, -

If3 j2n—1,thenforz fixed {4z —3y:y # z} = I\{z}. SO, + R; =
{(o0,y,1) : y € I} and thus every member of S’ appears exactly once in P + R.
If2n— 1 = 3tthen (00,4z — 3y,z) = (00,4z — 32,z) whenever 3y — 3z
(i.e.y = z + t). In that case P, U R, contains ¢ different elements three times
each. So P + R contains t(2n— 1) = +(2n— 1)? elements, each of frequency
3.

Next consider Q.. Does it contain repetitions? Now ¢, (oo, z, f) = ¢2(o0,
z,g) implies that either (2 f — z, f,z) = (29 — z,9, ) (which implies g = f) or
(2f—=z,f,) = (9,29 —x,x) forsome f # g. This means that g = 2 f — x and
f=2g—z,50 f =4 f — 3x. This occurs if and only if 3 f = 3z. Since f # z,
the necessary and sufficient condition is that 3 divides 2n— 1. If 2n— 1 = 3¢,
then f = £ + ¢t or z + 2¢. So to summarize, we have thatif 3 J2n— 1, then Q,
contains 2n — 2 distinct elements. Butif 3|2n— 1,say2n— 1 = 3¢, then Q,
contains one element twice ((z + ¢,z + 2t¢,z)) and 2n— 4 elements once each.

Clearly T, contains no repetitions. But can Q) and T;; have common elements?
There are two possibilities, either (2 f — z, f,z) = (3f — 2z, f,z) or (2 f —
z, f,x) = (9,39 —2z, x). The first of these is clearly impossible. For the second
onewegetg=2f—zand f=3g—2x 50 f =6 f— 5z. Equality is impossible
when (5,2n— 1) = 1; if 2n — 1 = 5u, then the entries of Q. with f = z +
iu,i=1,2,3,4, all occur in T;. So there is a 4-element overlap: (z + 21u,z +
iu,x) fori=1,2,3,4. We can see then that Q,\T; has 2n— 6 elements.

Can this overlap be among the repeats in the case 3|2 n—1 (i.e. 2n—1 = 15v)?
Thenu = 3v andt = Sv. The overlap is (z + 34v, z+ 61v, ): 1=1,2,3,4,
while the repeats are (z + Sv, z + 10v, ). So they are distinct.
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Now we can write out the indegree sequence of the train of GK»,,. There are
four cases:

@i (2n—-1,15)=1.
Every element of V' has indegree 1, except for the elements of T° (indegree 0)
and those of R (indegree 2). Since |T'| = |R| = (2n—1)(27n-2), the sequence
is

2n-1)(2n-2), (2n— l)(2'n.2 —-572+4), (2n—-1)(2n-2).
(i) (2n—-1,15) =3.
S' contains $(2n — 1)2 elements of indegree 3 and 2(2n — 1)? elements
of indegree 0. Also Q) contains 27 — 1 elements twice and (2n— 1)(2n —

4) elements once each. As none of these are elements of T, they give rise to
vertices of indegree 3 and 2 respectively. So the sequence is

(%(u— D2+ 2n-1)(2n—2),%,(2n—1)(2n—-4), %(21;— 1)?2
+2n— l)
= (%(21;- 1)(5n—4),2n—-1)(2n* —=Tn+6),(2n—1)(2n—4),

-§—(2'n- (n+ l))

(iii) (2n—1,15) = 5.
We know that Q N T has 4(2n— 1) elements. On comparing with case (i), this
means that the sequence is

((2n—-1)(2n-2) —4(2n—1),%,(2n—1)(2n—2) —4(2n—1))
=((2n-1)(2n—6),(2n— 1)(2n2 — 50+ 12),(2n—1)(2n—6))

@iv) (2n—1,15) = 15.
Similarly to the above, we modify the solution (ii), obtaining

(%(211— 1)(5n—4) —4(2n—1),%,(2n—1)(2n—4) —4(2n—1),
%(21;- (n+ 1)) '
= (?(27;_ )(n—2),(2n—1)(27* —Tn+14),(2n— 1)(2n—8),

%(2,1— (n+2)).
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As examples of the above trains we get:
The train of GK4 is 12,0,0,6.
The train of GK¢ is 0,75.
The train of GK3 is 12,0,0,6.
The train of GK10 is 0,75.
The train of GK, is 12,0,0,6.
The u’ainofGKm is 0,75.
The train of GK¢ is 12,0,0,6.
The train of GK2; is 0,75.
The train of GK36 is 0,75.

6. The Train of GA3,,nOdd andn > 5

In this section we will determine the train for the 1-factorization GAz, of K2,,
with n odd, n > 5. As discussed in the introduction, the vertices of K, are
0,1,...,n—1,0,1,...,n—1

When nis odd, we construct G K,.; on symbols {00,0,1,...,n— 1} and call
the factors Fy, Fy,..., Fy—1. Also construct GK,,+1 on the symbols {00, 0,1,

..,n—1} andcall the factors F3,Ft,...,F; . Now F; U F} is not a one-

factor, because oo appears twice. But, if we delete edges (0o, 1) and (o0,%) and
add (4,1) we obtain a one-factor; call it K;. In general, we will denote this new
one-factor K7 simply by f where f € {0,1,...,n— 1}.

We define a further set of one-factors by g; = {(z,z + 1) |z € Z,} for1 < i <
n— 1. Then Ko, K1,...,Kn1,01,92,---,9n1 is a one-factorization of K3,
called GAz,,.

From the definition above it is easy to compute the inages of all vertices in the
train. (Note again that each vertex in the train is a triple containing two vertices
in K, and a one-factor in GA,,). The following is a list of all possible cases of
mappings depending on the structure of the triple in the domain. By convention

we assume {z,y, f} € {0,1,...,n—1},z #y,f #3,f #y.

bi @y - (20-227 -0 3G+9) @<

$3:

al
'<|

~ (27

¢2: (z,y,2) — (2 (z+y))
CE

9= (27

2f ,5(z+y)> (r<y)

HI
el

¢4 : —(I+ y))
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¢s5 1 (z,v,0:) — (‘am,m%m y)) (z<y)

$6 : (T,9,9:) — (w— i,y—i, l(av+ y)) (z<y)
¢7 : (E,E,f) 4 (2f_ I,2f— z,:z:)

¢8 :(z,f,z) _)(zif)z)

¢9 : (zy-f:gi) - (z_' i)m’z)

$10: (2,9, /) = (2f—1,2f—y,9y2)

b (29,9 — (325~ vz + 1)

$12: (z,9,9) > (2f—z2,22—-y,9y—2)

¢13 : (zay)gl') - (y— ismxgv—z)

Let P; = image of Q;. There are six types of vertices in the train and we partition
the P; accordingly:

Type 1 vertices are of the form (z, y, f) and arise from the sets P; and Pg;

Type 2 vertices are of the form (z,y, f) and arise from the sets P;, Py, Py,
B, Py,

Type 3 vertices are of the form (Z, ¥, f) and arise from the sets P; and Ps;
Type 4 vertices are of the form (z,7, g;) and arise from the sets P;yp and Pj3;
Type 5 vertices are of the form (Z, 7, g;) and arise from the set Pj; ;

Type 6 vertices are of the form (z, y, g;) and arise from the set P;5.

To compute the indegrees of all Type 1 vertices, we explicitly compute P, and
Ps. We get

2
Ps =

A= {@bmleghng 2ot n g 2oe]

(a,b,h)|a # bandh # “;’b}.
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So there are three types of Type 1 vertices.

+b
1):{(abh)|h7£ L 7‘02 }
These will have mdegree 2.
3a-b 3b—a a+b
2).{(a,b,h)|h— —, orh=——, andh= — }

These will have indegree 1.

3a—-)b 3b—a a+b
3).{ ,b, 3 an > ,andh = > }

These will have indegree 1.

The indegrees were deduced by noting that both ¢; and ¢¢ are 1 — 1. Also,
since it cannot be that + 7(3a— (a + b), there is no fourth case.

Now by counting, we find (3 )(n— 3) vertices with indegree 2and (3) -2+ (3) -1
vertices with indegree 1.

For Type 2 we again note that ¢, , ¢4, ¢7, ¢s and ¢ are all 1 — 1. Now com-
puting the P; we see that

p= {52 0 20},

Po={ {0,525 #b},

P = {{a’sa’h}la # h},
Pg = {{a,3,a}}, and

Py = {{a,B atbyg 4 b}

If 1(3b—a) = $(3a—b), then a = b, a contradiction. So P, N P4 = ¢. Also,
if%(3b— a) = %—(a+ b), then again,a = b. So, P, N Py = ¢ and P4 N Py = ¢.
Clearly P; and P; are disjoint from each other and from P, , P4, and Ps.

So these are all distinct sets and thus every elementin P, UPs UP; UPs U Py
has indegree 1. Now |P2| + |Ps| + |P7| + |Ps| + |Po| = (n— 1) + (n— 1) +
wn— 1)+ n+ n(n—1) = 4?2 — 3nmore vertices with indegree 1.

Type 3 is analogous to Type 1. We get (3)(n — 3) additional vertices with
indegree 2 and (3) - 3 additional vertices with indegree 1.

to do Type 4 we must first note that ¢yo is not 1 — 1. Since ¢10(z,7, f) =
2f—z,2f—y,9y-z).thenforany k,0 < k<n—1,

3b—

bo (54 LTFRS+5 ) = 2F - DT 00,0,
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So ¢10 appears tobe nto 1. However,if s+ k= f+ £ orify+ k= f+ &,
then we are in cases corresponding to mappings ¢1; or ¢, respectively. Thus, if
k=2(f —x) ork = 2(f — y), then we are not in this case and so these images
must be different. Except for these two possibilities, all (z+ k, y + k, f+ £) have
the same image under ¢;0. Therefore ¢19 isn— 2 to 1.

Now, to finish Type 4, from the above discussion we have that every vertex
in Pio = {(a,b,g:)|a # b,i = a — b} has indegree at least n— 2. Note that if
Pi3 = {( a,b, gi)|a # b,i # a—b}, thennecessarily i # a—bandso P;3sNPyo = ¢.
Thus in Pjo there are n(n — 1) vertices, each with indegree n — 2. Since ¢y3 is
1 — 1, there are also n(n — 1) (n— 1) vertices in Py3 which each have indegree
1.

The Type 5 vertices are just the image under ¢1;. Since Py = {{@,b, ga_s}|a /
= b}, then there are n(n — 1) additional vertices of degree 1.

Type 6 is analogous to Type 5, so there are n(n— 1) more vertices of degree 1.
The total is

o (’2‘)3+ (4n2 —3n) + (;)3+ Wn—1)(n—1) +n(n—1) + n(n— 1)

= n(n* + Tn—7) vertices of indegree 1

. (;)('n—3) + (;‘)(n- 3) = n(n— 1)(n— 3) vertices of indegree 2
e n(n— 1) vertices of indegree n— 2.

By subtracting from the total numbser of vertices, which is (3")(n— 1), we find
that there are 2n(n — 1) (n — 3) vertices of indegree 0.
So the vector for GA;, is

n-5
2n(n—1)(n—13),n(n’ +2n—7),n(n—1)(n— 3),0,0,...,0,5(n—1).
As examples of the above trains we get:

The trains of GA, is 80,265,40,20.

The trains of GAy4 is 336,637,168,0,0,42.

The trains of G A3 is 864, 1233,432,0,0,0,0,72.

The trains of GA, is 1760, 2101, 880,0,0,0,0,0,0, 110.

The trains of G Ay is 3120, 3289, 1560,0,0,0,0,0,0,0,0, 156.

The trains of G A3 is 5040, 4845,2520,0,0,0,0,0,0,0,0,0,0,210.

From the results of this and the previus section we can see that fornodd, n > 5

that GA»,, is not isomorphic to GK>,, (since their trains are different). In fact it

is interesting to note that while the train of GK,, has length at most 4, the train
of GAz, haslengthn— 1.
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