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Abstract. In a recent paper, Gustavus J. Simmons introduced a new class of combin-
atorial-geometric objects he called “campaign graphs”. A k-campaign graph is a collec-
tion of points and segments such that each segment contains precisely k of the points,
and each point is the endpoint of precisely one segment. Among other results, Sim-
mons proved the existence of infinitely many critical k-campaign graphs for k < 4.
The main aim of this note is to show that Simmons result holds for k = 5 and 6 as well,
thereby providing proofs, amplifications and a correction for statements of this author
which Dr. Simmons was kind enough to include in a postscript to his paper.

For a positive integer k, a family F of points and straight-line segments in the
plane is called by Simmons [6] a k-campaign graph provided each segment of F
is incident with precisely k of the points of F , and each point of F is the endpoint
of precisely one segment of F. Replacing the last condition by the requirement
that every point of F be the endpoint of precisely m segments of F, where m is
a fixed positive integer, we obtain the definition of a ( k, m)-campaign graph or,
as we prefer to say, a (k, m) segment configuration; to avoid repetitions of this
long designation, we shall frequently shorten it to ( k, m)-SC. Since the cases with
k = 1 or 2 are rather obvious, we shall henceforth assume k& > 3. Clearly, disjoint
unions (as well as other kinds of combinations) of (k, m)-SCs are themselves
(k, m)-SCs; thus it is reasonable to restrict attention to critical (k, m) segment
configurations, that is, those which contain no proper subfamily whichis a (k, m)
segment configuration. The critical ( k&, m)-SCs are analogous to the well known
(connected) configurations of points and lines of classical geometry; in fact, our
results have to a large extent been made possible by previous research of such
configurations (see the forthcoming account [3]).

In [6], Simmons proved (among other results) that there exist infinitely many
critical (k, 1) segment configurations for k < 4, and gave one example of a crit-
ical (5, 1)-SC. The first result we shall prove is:

Theorem 1. For k = 5 or 6 there exist infinitely many critical (k,1) segment
configurations.

Remark. The statement of Theorem 1 regarding £ = 5 was included in the
Postscript of [6], but with no hint of how the family is constructed. Also included
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was this writer’s drawing of a single example of a critical (6, 1) -SC, to which we
shall return below.

Proof of Theorem 1: We start by constructing, for each integer n > 3, a family
F,. consisting of 36 points and 18n segments, and then proving that F,, is a
(5,1)-SC. In Figure 1 we show the families F,, for n = 3 and 4; this should
illustrate the idea of the construction. We must stress, however, that the drawings
do not represent a proof of the existence of the segment configurations shown:
the diagrams do not establish that the apparently straight line segments are in fact
straight, or that they could be replaced by straight line segments with the required
incidences. Indeed, it is well known that for configurations of points and lines
there exist examples in which the lines appear to be straight but actually are not
straight, and cannot be made straight without violating some of the incidence con-
ditions even if the positions of the points of the configuration are also permit-
ted to be changed. (The first such “non-stretchable” configuration was found by
Schroeter [5] more than a century ago; for an account of this topic see [1], [2].) To
show that our construction does not suffer from this shortcoming we shall assign
precise locations to the points so as to enable us to establish that the collinearities
claimed indeed take place.

To simplify the typography, it is convenient to introduce the abbreviations

rg = cos(n+ 2)a/cos(n— 1)a=cos(2n+ 1) e/ cos 2na,
rc=cos(2n+ 1)a/cos(2n— 1o
=cos(2n+ 1)a-cos(n+ 1)a/cos 2na - cos(n— 2)a

where o = &-. The equality of the two trigonometric expressions for rg can

be established as follows (using cos 2na = 3, cos 3na = 0, and the relations
between sums and products of cosines):

2cos(n+ 2)a - cos 2no
=cos(3n+ 2)a+cos(n—2)a
=cos(3n+2)a+2cos2na-cos(n—2)a
= cos(3n+ 2)a+ cos(3n—2)a+ cos(n+ 2o
=0+ cos(n+da
= cos 3na+ cos(n+ 2)a
=2c0s(2n+ Da-cos(n— 1)a.
The validity of the expressions for r¢ can be verified in a similar manner, and
since cosine is strictly decreasing in the interval from O to m, it follows that ¢ <
rg< 1.

Now we can define the “basic” points of F,, which we denote (as in Figure 1) by
Aj, Bj and C;; here and in the sequel, 7 ranges over theintegers0,1,2,...,6n— 1,
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Figure 1. Examples of (5, 1) segment configurations constructed in the proof of
Theorem 1. (a) corresponds to n = 3, and has 108 points and 54 segments; (b)
corresponds to » = 4 and has 144 points and 72 segments. To avoid clutter, only
some of the points have been labelled.

and is to be understood mod 6n. The remaining “non-basic” points D;, E; and
F; will be defined below. We choose ’

Aj=(cos2ja,sin2ja)
Bj=(rp-cos(2j+ Da,rp-sin(2j + 1)a)
Cj=(rc-cos2ja,rg-sin2ja);

then we define the lines a;, b; and c; as the straight lines containing the following
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Figure 1 (b).

points:
aj: AjBj+1BjinAjrnsa D;
bjl BjCj+2 Cj+nBj+n+l E;j
¢j: CjCjsan—1 Bjsan-1A4Aj+20F;.

In fact, the line ¢; contains the points A;_; and B;j_; as well. To show that the
“basic” points are indeed collinear as claimed, it is simplest to proceed as fol-
lows. Due to the symmetry of the families of points and lines in question, the
collinearity of A;Bj+1Bj+nAj+n+2 is equivalent to the assertion that the midpoint
M; of AjAj.ne is at the same distance from the center O of the figure as is
the midpoint M; of Bj.1Bj.,. But this equality of distances is obvious, since
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OM; = OA;j - cos(n+ 2)a = cos(n+ 2)a, while

_ cos(n+2)a

- . —_— =
OM; =rpg-cos(n— 1o cos(n-Da

-cos(n— Da=O0OM;.

Analogously, the collinearity of the points on b; is equivalent to the coincidence
of the midpoint of B; Bj .1 Wwith the midpoint of Cj,3 Cj., and the collinearity
of the points on c; is equivalent to the coincidence of the midpoints of A;j_1 A;js25,
Bj-1Bj+2n-1,3nd C;Cj+2-1; all these are immediate consequences of the trigono-
metric identities that appear in the definitions of rg and r¢.

The “non-basic” points D;, E; and F; are chosen arbitrarily on the appropriate
lines, subject only to the conditions of being on the suitable halflines and not on
any of the other lines. The 18 nsegments of F,, can now be defined as A;D;, B; E;
and C; F;, and it follows that F,, is a (5, 1) segment configuration, as claimed. Its
criticality is obvious.

In a similar way, for each integer n > 4 we construct a family G,,. consisting of
42 npoints and 21 nsegments, whichis a(6, 1) -SC. The construction is illustrated
forn = 5 in Figure 2. For each of the values of n in question, we include in G,, the
family F, constructed above, but with a specialized choice of the points E; and
Fj: we choose Ej as the intersection of b; with ¢j_n.3 , and Fj as the intersection
of ¢; with a;.,-3; as before, D; is free, except that it is now constrained to a
smaller halfline of a;. We also need to choose additional points, denoted G;. The
point G; is the intersection point of the line determined by A; and C; (which also
contains Aj+3, and Cj.3,) and the line b;_,_3. The segments of G, are now
defined as A;Dj, B;E;, C;F; and G;Gj+3, and it follows that G, is a (6,1)
segment configuration. 1

The need for caution in questions of “stretchability” is well illustrated by Fig-
ure 3, which is the example of a (6, 1) segment pattern I sent to Dr. Simmons,
and which appears in the Postscript to [6]. To my acute embarrassment, despite
the checks which I thought were complete, the apparent segments in this drawing
do not all correspond to straight line segments. In fact, if the other incidences are
kept, the segments are assumed straight and the whole family is assumed to have
18-fold rotational symmetry, then the triplets of segments which appear to meet at
each of the “points” marked by the large dots actually determine small triangles!
It therefore seems that this is a (6, 1) configuration not of segments but of “pseu-
dosegments”. However, I cannot prove even this statement: although I consider
this possibility most unlikely, it is conceivable that if one does not insist on the ro-
tational symmetry of the figure, the additional freedom may lead to realizability by
straight line segments. To resolve this question, one could parametrize all points
and lines, and see whether the resulting systems of equations have solutions; such
an approach was recently used to prove the realizability by straight lines (even in
the rational plane) of all the combinatorial types of the configurations (113) and
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Figure 2. A critical (6, 1) segment configuration constructed in the proof of The-
orem 1; it corresponds to n = 5 and has 210 points and 105 segments.

(123) of eleven or of twelve lines and points, each incident with three of the others
(see [7]). However, the size of the problem in the present case seems to make it
intractable by the methods available so far.

Concerning (k, m)-SCs with m > 2 we have the following general result,
which is analogous to well known facts about configurations of points and lines.

Theorem 2. If a critical (k,1) segment configuration exists, then there exist
critical (k, m) segment configurations for every m > 2.
Proof: The proof is quite straightforward, using a “direct product” approach. Let
F be a (k, m)-SC and F* a (k, m*)-SC, with points {P, | v € N} and {P} |
v € N*} and segments {S, | u € M} and {S} | p € M*} respectively. We take
copies of F and F* such that no line determined by points of one is parallel to a
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Figure 3. A “fake” (6, 1) segment configuration, in which the segments which
appear to be straight cannot all be straight if the symmetry and incidences are to
be preserved.

line determined by points of the other. Then a (k, m+ m*) segment configuration
G = F ® F* is obtained by taking the points {P, + P} | v € N,v € N*} and
the segments {P, + S; | v € N,p € M"‘}and{P*+S,, |ve N, pe M} 1t
is clear that the resultmg configuration G is critical. |

The construction is illustrated in Figure 4, in which both F and F* are the
smallest (3, 1)-SC, consisting of 6 points. The construction leads to very large
configurations even for moderate values of k and m. Moreover, graphical rep-
resentations of the resulting configurations are so cluttered that they provide no
enlightment. Hence there may be some interest in an alternative construction for
the special case of m = 2 and k = 3 or 4, which leads to smaller and more
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symmetric configurations.

For the construction of infinitely many critical (3,2) segment configurations we
proceed as we did in the proof of Theorem 1. We first specify, for each odd integer
n > 3, afamily of 12 n points and 12 nsegments, and then show that it is a critical
(3,2) segment configuration H,,. In Figure 5 we illustrate the construction for
n= 3. Putting again « = ¢, we define

Tp = €08 2na/ cos(n— 2)a = cos(2n+ 2)a/cos(n+ 4) a;

the equality of the two trigonometric expressions can be verified as in the earlier
situations. Then we define, for j = 0,1,2,...,6n— 1, the points

Aj=(cos2ja,sin2ja)
Bj=(rg-cos(2j+ 1)a,rp -sin(2j + 1) a).

Using the trigonometric relation which appears in the definition of rg and the
symmetry of this set of points, it is simple to verify that for each j the following
quadruplets of points are collinear:

A;jBji(n-3)/2 Bj+ (3m+5)/2 Ajram2
A;jBjs(nr1y/2 Bj+ (3n-1y/2 Ajr2n-

Consequently, the 127 points A; and B; and the 127 segments A;Bj.(3n5)/2
and By (n+1)/2 Aj+24 form a (3, 2) segment configuration.

We still have to show that the configurations H,, are critical. A simple way
to do this is as follows. It is clear that the segments of every (k,2) segment
configuration form a collection of circuits. However, in the case of an H,,, using
the fact that n is odd it is easy to check that the segments form a single circuit,
hence H,, is critical, as claimed. (All the other assertions concerning H,, are valid
for even n as well.) ]

The smallest (3, 2) segment configuration obtainable by this method is the one
inFigure 5; it has 36 points. A smaller example of a (3,2) segment configuration,
with only 21 points, is shown in Figure 6. It is derived from a configuration (214)
of points and lines discussed in [4]. It is not known whether smaller examples
exist, with or without the added assumption that the segments form a single circuit.

It seems that a somewhat analogous construction of (4 ,2) segment configura-
tions is possible. We have not investigated this question systematically, but show
in Figure 7 an example with 72 points; this is the smallest number of points in a
configuration of this type we have been able to find.

Simmons [6] characterized the (3, 1)-SCs, and pointed out the great prolifer-
ation of the (4 ,1)-SCs. The central problem concerning segment configurations
is whether for every k there exist (k, 1)-SCs.
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Figure 4. A (3,2) segment configuration which illustrates the construction used
in the proof of Theorem 2. In this example the two “factors” are isomorphic; one
copy is emphasized by heavy lines.

Conjecture. For every k there exist infinitely many critical (k, 1) segment con-
figurations.

The results of Simmons [6] and of the present paper establish the validity of
this conjecture for k£ < 6, but give no clues for larger values of k. So far, I only
found one “fake” (7,1)-SC, with “pseudosegments” which apparently cannot be
made straight. On the other hand, even in cases with k = 5 or 6, in which we
know that there are infinitely many different (£, 1)-SCs, it is not known whether
the symmetries exhibited in the constructions we made are essential. One way
(which is also of independent interest) of investigating this would be to try to find
(5,1) or (6,1) segment configurations in the rational plane, that is, under the
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Figure 5. A (3,2) segment configuration obtained by the construction explained
in the text.

added restriction that all the points have rational coordinates.

Another open question is whether ( k, 1)-SCs exist for all k if one allows the
use of “pseudosegments” (that is, curvilinear arcs) but requires them to behave
like straight line segments in as far as pairwise intersections are concerned. More
specifically, no two should have more than one point in common, and if the com-
mon point is relatively interior to both, they must cross each other. The (6, 1)-SC
in Figure 3 satisfies these conditions, as does the (7, 1)-SC with pseudolines men-
tioned above.
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Figure 6. The smallest (3, 2) segment configuration known.
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Figure 7. A (4, 2) segment configuration with 72 points and 72 lines; no smaller
(4,2)-SC is known.
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