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Abstract. Itis shown that a 4-critical planar graph must contain a cycle of length 4 or
5 ora face of size k, where 6 < k < 11.

A graph G is said to be k-critical if it has chromatic number k but every proper
subgraph of G is (k — 1)-colorable. It was proved by Grotzsch [5] thatif G is a
planar graph without triangles then G is 3-colorable. It follows that any 4-critical
planar graph must have at least one triangular face. Griinbaum [6] proved that any
such graph must have at least four triangular faces. Griinbaum’s proof of this result
contained some inaccuracies but a corrected proof was published by Aksionov [4].

It is natural to ask whether a 4-critical planar graph must contain a 4-cycle.
The answer is no; the planar graph shown in Figure 1 is 4-critical and contains no
4-cycle. The graph was obtained via a construction described by Aksionov and
Mel’nikov in [2] and [3]. Let G be a 4-critical graph and let e = ab be an edge
of G. Delete e and replace it by the graph H shown in Figure 2. The vertices
a,b of H are to be identified vith the correspondingly labelled vertices of G. The
graph in Figure 2 is 3-colorable. However, in every 3-coloring the vertices a and
b are assigned different colors; it is a quasi-edge in the sense of Aksionov and
Mel’nikov. The resulting graph is then easily seen to be 4-critical and is planar if
G is planar. If we apply this operation to each of the three edges incident with a
particular vertex of K4 we get the graph in Figure 1. The graph in Figure 1 has
six faces of size 5. There are three pairs of such faces; in each pair the faces share
an edge. If we now apply the above construction to each of these edges we get a
larger graph with the same property. This may be repeated as often as we please.
Thus there exist arbitrarily large 4-critical planar graphs with no cycles of length 4
and having six faces of size 5. Furthermore, these graphs have no cycles of length
5, other than the boundaries of the pentagonal faces.

One may construct arbitrarily large 4-critical planar graphs with no cycles of
length 5 and only four cycles of length 4. Let G be a 4-critical planar graph with
exactly two 4-cycles and exactly two 5-cycles and suppose that these 5-cycles
bound faces sharing an edge e. An example of such a graph is shown in Figure
3. Let G denote the collection of all such graphs. That G contains arbitrarily large
graphs may be seen by noting that if one deletes the special edge e of any such
graph and replaces it by a copy of H in the manner described earlier, one gets a
larger member of G. Recall the following (special case of a) construction of Hajos
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Figure 1 Figure 2

[7]: Let G; and G be 4-critical planar graphs and lete; = a1b; ande; = a2 b be
edges of G; and G, . Delete e; and e, identify a; with a3 and add the edge by b, .
The resulting graph is then 4-critical and planar. Furthermore, if G; and G, are
members of G and if e; and e, are chosen as the special edges which separate the
faces of size 5, the resulting graph has no 5-cycles and has four cycles of length 4.
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Figure 3

Steinberg (see [2], page 131 and [3], page 9) conjectured in 1975 that any 4-
critical planar graph must contain a cycle of length 4 or 5. The object of this note
is to prove that a counter-example to Steinberg’s conjecture, if there is one, must
contain a small non-triangular face.

Theorem. LetG be a 4-critical planar graph. Then at least one of the following
holds:

(@) G contains a cycle of length 4 or 5;
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(b) every plane drawing of G contains a face of size k for some k satisfying
6 <k<11.

Proof: Suppose that (a) doesn’t hold for G and suppose that some plane drawing
of G has no face of size k, 6 < k < t. Let n,m and f denote the number of
vertices, edges and faces of G, respectively, and let f; denote the number of faces
with 1 edges. Then

2m=zif;= 3f3+zifi 23fs+i(f - 1),

>3 >t
from which we get
-3fz+2
F< ( ){3 m
Since 3 f3 < m this gives
(t+3)m
f<——

From Euler’s formula, n+ f — m = 2, we get

n+ ﬁm—m22

3¢
so that, sincet > 6,
3t 6t
mS 2t-—3”— 2t—3 <2n.
Define [ by
m=2n—1L. 1)

Let p denote the number of vertices of G of degree 3. Then
4n—21=2m= d(v) >3p+4(n—p)

from which we get
p> 2l V)]

Any vertex of degree 3 is incident with an edge e such that the faces on each
side of e each has at least ¢ edges; otherwise, there would be a 4-cycle. From (2),
there are at least [ such edges e. Split the set of edges of G into two sets as follows

E; = {e : both faces neighboring e have at least t edges}
E, = {e : one face neighboring e is triangular}.
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It is clear that ]
f < 7Bz

Let F denote the set of faces of G of size at least t. Set up a bipartite graph
whose parts are F and E; U F, and in which F € Fis joinedtoe € E; U E,
if e is an edge of F. In this graph the degree of each element of E; is 2 and the
degree of each element of E is 1 so that the number of edges is 2| Ey | + | Ez|. On
the other hand, since the degree of each element of F is at least ¢, the number of
edges is at least ¢|F|. Thus

t|F| < 2| By | + | B2,

5o that 2|Ei| + | B
+
f-fi= A g SRR
This gives
f=f+(f-1)

1 2|Er| + |E
S§IE2I+"'|1I,;¢
=6m+(g‘t'3)|E2|, since |E1| = m — | By |

6 —3)(m—
< m+ (¢ 3t)('m l), since |By| < m — 1
Z(t3), _(t=3),

By Euler’s formula,

n+w— —f_—3l >2
3t )" 3 mza-

This implies, by (1), that

lzt_6n+6 3)

It follows from (1) and (3) that

m=2n—1<2n— (%%-6: (%) n—6.

If we choose ¢ = 12 we get m < 3n — 6, contradicting the fact that m > 3n
in a4-critical graph. Thus ¢t < 11. ]
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Haj6s [7] constructed 4-critical graphs with n vertices and m edges where

W

S5 ifn=0(mod3)
m=4{ 2%  ifn= 1(mod3)

2 ifn=2(mod 3)

L
W

w

and it has been conjectured that there do not exist 4-critical graphs of order n with
fewer edges. If this conjecture is true we could take t = 9 at the last step in the
proof and it would follow that every 4-critical planar graph has a cycle of length 4
or 5 or a face of size 6,7 or 8. We remark that the inequality m > 32—" for 4-critical
graphs has been improved by Gallai [4] to m > -2-1°3—", but this stronger inequality
does not allow us to choose a smaller value for 3.
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