On Balanced Graphs

N. Veerapandiyan 1 Department of Mathematics A.V.V.M. Sri Pushpam College Poondi - Thanjavur - 613 503. **INDIA**

and

S. Arumugam Department of Mathematics St. John's College Palayamkottai - 627 002

INDIA.

Abstract. A graph G is defined to be balanced if its average degree is at least as large as the average degree of any of its subgraphs. We obtain a characterization of all balanced graphs with minimum degree one. We prove that maximal Q graphs are strictly balanced for several hereditary properties Q. We also prove that a graph G is balanced if and only if its subdivision graph S(G) is balanced.

Introduction

The graphs in this paper are finite, undirected and without loops and multiple lines. Throughout the paper p = p(G) stands for the number of vertices and q = q(G)stands for the number of lines of a (p,q) graph G. The values p and q are called the order and size of G, respectively. Terms not defined here are used in the sense of Harary [2].

The notion of a balanced graph originated in the work of Erdös and Renyi [1] on Random Graphs.

For a (p,q) graph G, we define the average degree d(G) and the maximum average degree m(G) of G as follows:

$$d(G) = 2q/p;$$
 $m(G) = \max_{H \subseteq G} d(H).$

We observe that if G is a connected graph then d(G) < 2 if and only if G is a tree and d(G) = 2 if and only if G is unicyclic.

A graph G is said to be balanced if $d(H) \leq d(G)$ for every subgraph H of G and is strictly balanced if d(H) < d(G) for every proper subgraph H of G. Clearly G is balanced if and only if m(G) = d(G) and is strictly balanced if and only if $H \subseteq G$ and d(H) = m(G) imply that H = G.

One can easily verify that trees, cycles, complete graphs and complete bipartite graphs are strictly balanced; whereas, a unicyclic graph which is not a cycle is balanced but not strictly balanced.

Since the number of lines of a subgraph of a graph G attains its maximum if and only if it is an induced subgraph of G, a graph G is balanced if and only if $d(H) \leq d(G)$ for every induced subgraph H of G.

¹ at present working as C.S.I.R. Fellow at A.V.V.M. Sri Pushpam College, Poondi, THANJAVUR.

2. Balanced Graphs

Theorem 1. A graph G is balanced if and only if for every component H of G, d(H) = d(G) and H is balanced.

Proof: The Theorem is obvious if G is connected. We prove the Theorem for G with exactly two components. The result then follows by induction.

Let G be a (p,q) graph with exactly two components G_1 and G_2 of order and size (p_1,q_1) and (p_2,q_2) respectively so that $p=p_1+p_2$ and $q=q_1+q_2$. Suppose G is balanced. If $d(G_1) < d(G_2)$ then $d(G) < d(G_2)$ which is a contradiction. Hence $d(G_1) = d(G_2) = d(G)$ and both G_1 and G_2 are balanced.

Conversely suppose G_1 and G_2 are balanced and $d(G_1) = d(G_2) = d(G)$. Then for any subgraph H of G, $d(H \cap G_1) \leq d(G_1) = d(G)$ and $d(H \cap G_2) \leq d(G_2) = d(G)$ so that $d(H) \leq d(G)$ and hence G is balanced.

We define a deficit function f for a graph G as follows: For any (p_o, q_o) subgraph H of G, $f(H) = d(G)p_o - 2q_o$.

Clearly f(G) = 0 and G is balanced if and only if $f(H) \ge 0$ for every subgraph H of G. For any two subgraphs H_1 and H_2 of G, $f(H_1 \cup H_2) = f(H_1) + f(H_2) - f(H_1 \cap H_2)$. Thus if H_1 and H_2 have no vertex in common and $f(H_1 \cup H_2) < 0$, then either $f(H_1) < 0$ or $f(H_2) < 0$. Hence we have

Theorem 2. A graph G is balanced if and only if $d(H) \leq d(G)$ for every connected induced subgraph H of G.

Theorem 3. Let G be a connected graph such that $\delta(G) = 1$. Then G is balanced if and only if G is either a tree or a unicyclic graph.

Proof: Suppose G is a connected balanced graph with $\delta = 1$. If G is neither a tree nor a unicyclic graph, then p(G) < q(G). Now if u is a vertex of degree one in G, then d(G-u) > d(G) which is a contradiction. The converse is obvious.

The following Theorem generalizes Theorem 3.

Theorem 4. Let G be a graph with k components and let $\delta(G) = 1$. Then G is balanced if and only if each component of G is either a tree of order p/k or a unicyclic graph.

Proof: Suppose G is balanced. Let H be a component of G containing a vertex of degree one. By Theorem 3, H is a tree or a unicylic graph. If H is a tree, then by Theorem 1, each component of G must be a tree of order p/k and if H is unicyclic, each component of G must be unicyclic. The converse immediately follows from Theorem 1.

Remark

Let G be a connected balanced graph with $\delta > 1$ and let u be a vertex of degree δ in G. Then d(G - u) < d(G), which implies that $q < \delta p$.

For a given property Q, call a graph G a maximal Q graph if no line can be added without loosing the property Q.

Theorem 5. Let Q be a hereditary property of graphs. Let f be a positive strictly monotonic increasing linear function defined on $[x, \infty]$ such that every maximal Q graph G with p vertices has f(p) lines. Then every maximal Q graph is strictly balanced.

Proof: Let G be a maximal Q graph with p vertices and f(p) lines.

Let H be a proper induced subgraph of G with p_o vertices and q_o lines. Since H has $Q, q_o \leq f(p_o)$. Now f(p)/p represents the slope of the line joining the point (0,0) to the point (p,f(p)) in the Euclidean plane. Since f is a positive strictly increasing linear function, $p_o < p$ implies $f(p_o)/p_o < f(p)/p$ and hence d(H) < d(G).

Corollary.

- i) Every maximal planar graph is balanced.
- ii) Every maximal outerplanar graph is balanced.

We denote by S(G), the graph obtained from G by subdividing each line of G exactly once. S(G) is called the subdivision graph of G.

Theorem 6. Let G be a connected graph. Then S(G) is balanced if and only if G is balanced.

Proof: Suppose S(G) is balanced. Then for any connected induced subgraph H of $G, d(S(H)) \leq d(S(G))$ which implies $d(H) \leq d(G)$. Conversely suppose G is balanced. Let H_1 be a connected induced subgraph of S(G). We claim that $d(H_1) \leq d(S(G))$. This is trivial if H_1 is a tree. Hence we assume that H_1 is not a tree.

If there exists a subgraph H of G such that $S(H) = H_1$, then $d(H) \le d(G)$ from which it follows that $d(S(H)) = d(H_1) \le d(S(G))$. Otherwise there exists a maximal subgraph H_2 of H_1 such that $S(H) = H_2$ for some subgraph H of G. Since H_1 is not a tree, $d(H_1) \le d(H_2)$. Also $d(H_2) = d(S(H)) \le d(S(G))$ and hence $d(H_1) \le d(S(G))$.

Acknowledgements

We thank Dr. P.N. Ramachandran and Dr. P. Paulraja for their helpful suggestions.

References

- 1. P. Erdös and A. Renyi, On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad Sci. 5, 17–61.
- 2. F. Harary, Graph Theory, Addison-Wesley, Reading Mass 1969.