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Abstract. A graph G is defined to be balanced if its average degree is at least as
large as the average degree of any of its subgraphs. We obtain a characterization of
all balanced graphs with minimum degree one. We prove that maximal Q graphs are
strictly balanced for several hereditary properties Q. We also prove that a graph G is
balanced if and only if its subdivision graph S(G) is balanced.

Introduction

The graphs in this paper are finite, undirected and without loops and multiple lines.
Throughout the paper p = p(G) stands for the number of vertices and ¢ = ¢(G)
stands for the number of lines of a (p, q) graph G. The values p and q are called
the order and size of G, respectively. Terms not defined here are used in the sense
of Harary [2]. \

The notion of a balanced graph originated in the work of Erdds and Renyi [1]
on Random Graphs.

For a (p,q) graph G, we define the average degree d(G) and the maximum
average degree m(G) of G as follows:

d(G) =2q/p; m(G) = Ipéléd(H)-

We observe that if G is a connected graph then d(G) < 2 ifandonly if G is a
tree and d(G) = 2 if and only if G is unicyclic.

A graph G is said to be balanced if d( H) < d(G) for every subgraph H of
@G and is strictly balanced if d( H) < d(G) for every proper subgraph H of G.
Clearly @G is balanced if and only if m(G) = d(G) and is strictly balanced if and
onlyif H C Gand d(H) = m(G) imply that H = G.

One can easily verify that trees, cycles, complete graphs and complete bipartite
graphs are strictly balanced; whereas, a unicyclic graph which is not a cycle is
balanced but not strictly balanced.

Since the number of lines of a subgraph of a graph G attains its maximum if
and only if it is an induced subgraph of G, a graph G is balanced if and only if
d(H) < d(@G) for every induced subgraph H of G.
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2. Balanced Graphs

Theorem 1. A graph G is balanced if and only if for every component H of
G,d(H) = d(GQ) and H is balanced.

Proof: The Theorem is obvious if G is connected. We prove the Theorem for G
with exactly two components. The result then follows by induction.

Let G be a (p, g) graph with exactly two components G, and G, of order and
size (p1,q1) and (p2, g2) respectively sothatp = p;+p; and g = g1 +4¢2. Suppose
G is balanced. If d(G1) < d(G2) then d(G) < d(G,) which is a contradiction.
Hence d(Gh1) = d(G2) = d(G) and both G and G, are balanced.

Conversely suppose G and G, are balanced and d(G1) = d(G2) = d(G).
Then for any subgraph H of G, d(HNG1) < d(G1) = d(G) and d(H NG) <
d(G2) = d(G) sothatd( H) < d(G) and hence G is balanced. 1

We define a deficit function f for a graph G as follows: For any (p,, g,) sub-
graph H of G, f(H) = d(G)po — 2 go.

Clearly f(G) = 0 and G is balanced if and only if f(H) > 0 for every
subgraph H of G. For any two subgraphs H; and H, of G, f(H; U Hy) =
f(H1) + f(H2) — f(Hy N Hy). Thus if H; and H, have no vertex in common
and f(H;1 U Hz) < 0, then either f( H;) < 0 or f( H2) < 0. Hence we have

Theorem 2. A graph G is balanced if and only if d(H) < d(G) for every
connected induced subgraph H of G.

Theorem 3. Let G be a connected graph such that §(G) = 1. Then G is bal-
anced if and only if G is either a tree or a unicyclic graph.

Proof: Suppose G is a connected balanced graph with § = 1. If G is neither a tree
nor a unicyclic graph, then p(G) < ¢(G). Now if u is a vertex of degree one in
G, then d(G — uv) > d(G) which is a contradiction. The converse is obvious. i

The following Theorem generalizes Theorem 3.

Theorem 4. Let G be a graph with k components and let 6(G) = 1. Then G
is balanced if and only if each component of G is either a tree of order p/k or a
unicyclic graph.

Proof: Suppose G is balanced. Let H be acomponent of G containing a vertex of
degree one. By Theorem 3, H is a tree or a unicylic graph. If H is a tree, then by
Theorem 1, each component of G must be a tree of order p/ k and if H is unicyclic,
each component of G must be unicyclic. The converse immediately follows from
Theorem 1. 1

Remark

Let G be a connected balanced graph with § > 1 and let u be a vertex of degree
§in G. Then d(G — u) < d(G), which implies that g < &p.
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For a given property Q, call a graph G a maximal Q graph if no line can be
added without loosing the property Q.

Theorem 5. Let Q be a hereditary property of graphs. Let f be a positive strictly

monotonic increasing linear function defined on [ x, 0o] such that every maximal
Q graph G with p vertices has f(p) lines. Then every maximal Q graph is strictly
balanced.

Proof: Let G be a maximal @ graph with p vertices and f(p) lines.

Let H be a proper induced subgraph of G with p, vertices and g, lines. Since
H has Q,¢, < f(po). Now f(p)/p represents the slope of the line joining the
point (0,0) to the point (p, f(p)) in the Euclidean plane. Since f is a positive
strictly increasing linear function, p, < p implies f(p,) /p, < f(p)/p and hence
d(H) < d(G). |

Corollary.
i) Every maximal planar graph is balanced.
ii) Every maximal outerplanar graph is balanced.

We denote by S(G), the graph obtained from G by subdividing each line of G
exactly once. S(@G) is called the subdivision graph of G.

Theorem 6. Let G be a connected graph. Then S(G) is balanced if and only if
G is balanced.

Proof: Suppose S(G) is balanced. Then for any connected induced subgraph H
of G,d(S(H)) < d(S(G)) which implies d( H) < d(G). Conversely suppose
G is balanced. Let H; be a connected induced subgraph of S(G). We claim that
d(H1) < d(S(G)). This is trivial if H, is a tree. Hence we assume that H; is
not a tree.

If there exists a subgraph H of G such that S(H) = H;, then d(H) < d(Q)
from which it follows that d(S(H)) = d(H1) < d(S(Q)). Otherwise there
exists a maximal subgraph H, of H; such that S(H) = H, for some subgraph
H of G. Since H; is not a tree, d(Hy) < d(H,). Also d(H;) = d(S(H)) <
d(S(G)) and hence d( H;) < d(S(®)). |
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