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Abstract. A Nuclear Design N D(v; k, )) is a collection B of k-subsets of a y-set V,

where B = P N C, where (V, P) is a maximum packing (PD(v; k,)\)) and (V,C)
is a minimum covering (CD(v; k,))) with |B| as large as possible. We construct
ND(v;3,1)’sforall v and \. Along the way we prove for every leave (excess) possible
for k = 3, all v, ), there is a maximum packing (minimum covering) achieving this
leave (excess).

Introduction

If one wishes to construct tables of packings and coverings for v and ), space can
be saved by constructing the nuclear design, the packing supplement P — N and
the covering supplement C — N.

Formally let us define:

(@) The pair (V, P) is a v, k, A packing design (a PD(v; k,))) iff [V| = v, P
is a collection of k-subsets of V', so that every 2 subset is a subset of at most
X elements of P. |P| as large as possible.

(b) The pair (V,C) isa v, k, A covering design (a CD(v; k, )\)) iff [V]|=v,C
is a collection of k-subsets of V, so that every 2 subset is a subset of at least
X elements of C. |C| as small as possible.

(c) Thepair(V,N) isawv, k, X nuclear design (an ND(v; k,)\)) iff N = PNC
and |N| is as large as possible among all intersections of any maximum P
and minimum C.

Indeed this opens up the entire question of the nuclear spectrum.

The nuclear spectrum spec ND(v; k, ), is the set of all integers n for which
there exists a PD(v; k,\), (V, P) and a CD(wv; k,)),(V,C) andn= |[PNC|.
This has been solved for v = 1, 3(6) A = 1, k = 3 by Lindner and Rosa [LR],
also the spectrum of intersections of two packings v = 0,2 mod 6 and \ = 1, has
been solved by Hoffman and Lindner [HL]. '

Packings for k£ = 3,4 and all )\, were dealt with in papers by Hanani, Brouwer,
Assaf [H1][B][A2]. Coverings for k = 3 and all \ were dealt with also in [FM],
[H1], for k = 4 and X = 1 dealt with by Mills [M1][M2], and for k = 4 and all
A > 1 by Assaf [Al].
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Two auxiliary concepts will be needed, that of the leave and the excess [MR][C].
The leave of a packing (V, P) is a graph (V, E) where (zy) € E with multi-
plicity m if {z, y} is a subset of a A — m blocks of P. The excess of a covering
(V,C) isagraph (V, E) where (zy) € E with multiplicity m if {z, y} is a subset
of m — X blocks of C.
The following necessary conditions hold for a leave of (V, P)
@ (v(v—1)/2) —|E| =0 mod (k(k—1)/2)
(b) forallz € Vdeg(z) = A(v—1) mod (k—1)
(©) |E| is minimal w.r.t. (a) and (b)
(d) forallz € V,deg(z) < M(v—1).
Similarly for an excess we have
@ v(v—1)2/2+|E| =0 mod (k(k—1)/2)
M) forallz € V,deg(z) = X(1 —v) mod(k—1)
(c) |E| is minimal w.r.t. (a) and (b)

We note that excesses and leaves are not necessarily unique as there may be
many non isomorphic graphs on E edges with the degree of each vertex in the
same congruence class mod ( k — 1). For example the following are graphs with
4 edges and each degree even. (a) AB, BC, CD, DA, (b) AB, AB, BC, BC,
() AB,CD, AB,CD and (d) AB,AB, AB, AB.

The following conjecture which is a natural generalization of the Wilson’s [W]
theorem would be of great help.

Conjecture. There is a ny such that for all n > ng, if (V, E) is a graph with
|V| = n, and (V, E) satisfies the necessary conditions above to be a leave (ex-
cess), then there is a packing (covering) with a leave (excess) of (V, E).

It is believed that this conjecture is not harder than Wilson’s Theorem. Theo-
rem 1 provides a proof fork = 3, mp = 6.

The construction techniques

In this section we briefly outline the construction techniques which can and do
arise in the constructions of nuclear designs based on the leaves and excesses.
The selections of which a particular leave to choose can be critical. Sometimes
the packing in the literature which is given has a leave which is easily constructed
but bad for the construction of nuclear designs e.g. v=0mod 12, A= 1,k =4,
the leave given in [B] is a 2-factor of disjoint triangles where as what we would
need is a 2-factor of disjoint quadrilaterals.

The easiest case is when a design exist then the maximum packing is the mini-
mum covering and that is the nuclear design. The next case in order of difficulty is
when we can arrange for P C C. This happens, for example when v = 5 mod 6,
k =3, ) = 1, but not every maximum packing has this property e.g. v = 0 mod
12,k = 4, = 1. Thenextcaseis forallv = 1 mod (k—1) butv(v—1)/2 £ 0
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mod (k(k — 1) /2). In this case the leave and excess are fixed graphs on E with
|E| < k(k — 1) edges. The best approach is to find the smallest subset V' con-
taining all vertices of non-zero degree of the leave, and forming a packing design
on the minimal V" C V'. Following this one finds a N D(v"; k, \). One can then
use the theory of designs with holes [RS] to find N D(v; k, )).

There is a hidden difficulty in this and other reduction to small cases, i.e. does
the purported nuclear design have |V | as large as possible!?

The next most difficult cases are handled by using GD D’s [H1], the basicGDD
constructions falls into two classes. The first is when the leave consists of many
vertex disjoint isomorphic copies of the same graph. In this case we try to group
some of the copies into subsets which can be the leave of specially constructed
subdesigns and use GDD’s to construct the larger design. The second is where
except for a small (independent of V') fixed subgraph the rest is many isomorphic
copies of the same fixed graph.

(v; 3, ) -Nuclear Designs
The fist thing we do in this case is to decide what leaves and excesses can be used.

Theorem 1. For k=3 any v, \, v > 6, the only graphs which can be leaves or
excesses are as in Table 1 with the following abbreviations and all are realizable.

Graphs of odd degrees

1F A one factor on 6t vertices
1FY A onefactoron 6t — 4 vertices and a tree on 4 vertices with one vertex
of degree 3

06 (@) 1FH  aonefactoron 6t — 6 vertices and a graph

AB,BC,BD,DF,DG

(b) 1F5 aone factoron 6t — 6 vertices and a tree on 6
vertices with one vertex of degree 5

(¢) 1FYY aone factoron 6t — 8 vertices and two trees each on
4 vertices with one vertex of degree 3

d) 1F3 a one factor on 6t — 2 vertices and a triple edge
AB,AB, AB

(¢) 1F —0 aone factoron6t— 4 vertices and a graph
AB,BC,BC,CD

1The best results we have obtained for small values by taking a packing, judiciously throw away as
few blocks as necessary and let the computer hill climb [S3] to a covering.

227



8¢

p(AJTAIL TA 9090 YA T Ad1AT 0°0)
QIe UWNJOD PUZ UO SUONIPUOD AIBSSIOAU Y) pue
GPET T 00 vAT TWH  0°0)

QIe UWM[Od YIJY 9y} JOJ SUOHIPUOD ATeSSa0aU 9y} TBY) 39S 01 ASeD SI 1|

‘T d1Ad1 0°0 0'0 A1 S
4 00 0°0 4 0’0 0'0 4
00 Ad1 Ad1 00 00 A1d1 £
-‘z o-q o:o ~z‘ 0:0 o-‘o A P X
70 Ad1d1 0'0 141 0'0 CARTA! 1
00 0'0 00 00 0'0 00 0
S ¥ £ 4 1 0
9 pom an

*(9)¥ = X pIm uBIsap e JO $YO0[q dY) O} WAy} ppe pue
(9)1 = Y yim uSisap . Jo $Y00[q o oe) ueow 0] ‘ojdurexa J10J (y = X))+ (I = ¥)
UOTIEIOU 9y 95N [[BYS I\ “(SSI0X0) 9ABI] PAIISAP SY) 2AIYOR 03 JOPIO Ul Apuopuad
-opur s3uLIaA09 10 sSurjoed oy oye) 9SINOD JO UBD 9A\ “IOYI330) 19§ SwIes 9y} uo
(s3u119409) s3unyoed om1 Jo s3501q oy Surppe Ajduirs £q paurelqo 9q ued SAUd
Y1 JO SWOS "PIAdIYOR 9q Jsnus ST | = X JOJ 9nbrun 10 onbrun st (S590X%9) 9AB9[
B USYM—MO[aq 9[qel o) ut sotnud oy} [fe ap1aoid [TH] ‘[HA] 1oded oy, :Jooig

(1) s1qeL
vd ‘T J1:Ad1 00 Ad1:Ad1 00 J1d1 S
T 00 0'0 Thd 00 00 14
0'0 Ad1:Ad1 00 9090 00 d1d1 £
v ‘T 0'0 0'0 v ‘T 0‘0 0'0 Z_1gpowy
T Ad1:Ad1 0'0 Ad1d1 00 J1d1 1
00 00 0'0 00 00 00 0
S 4 € (4 1 0
. 9 pom n
0g°'04 ‘av ‘av 0 (p)
ao‘'ao ‘gv ‘qv se8pe s1qnop ¢ ¢ ©)
av ‘gv ‘gv ‘gV <3ps oidnipenb v v @
Va ‘do ‘04 ‘gv 1esseqapenb y 0O ® A
(T < X) gV ‘gv °3peo[qnop vy T

s9218ap uana jo sydern



The only non trivial calculation is v = 2(6), A = 3(6) the necessary conditions
force the leave (excess) to be a graph with 3¢ + 3 edges and all degrees odd. It is
easily seen that no degree can exceed 6 and the 5 graphs of 06 are the only possible
ones.

Sufficiency of the 5th column
Packing )\ = 4(6) For Q take (A = 1) + () = 3); For 4, 22, oo take two
copies of (A = 2).
A = 1(6),) > 1, Therestof E4 is obtained by (A = 3) + () = 4).
Covering ) = 2(6), Q and oo can be obtained by adding 2 blocks to a pack-
ing. For 4,22 wetake 2 x (A = 4) + () = 3) for A > 2. For A = 2 we take
two copies of a cover for A = 1.
A =5(6),wetake (A =3) + (A =2).

Sufficiency of the 2nd column

Packing: A = 3(6). The graphs 1F — 0—, and 1 F3 can be obtained by () =
1) + (A = 2). To obtain the remaining three graphs we note that 3 one factors on
v—8 points can be united to form a configuration which consists of disjoint copies
G where G is a hexagon abcdef and edges ae, bd, fc. Removing two triangles
from G leaves the 1 factor fc, ab, ed. Let us take 3 copies of a packing with
A = 1 and ensure that these v — 8 have a leave in the form of this configuration.
We add also to the packing the triangles a fe, bdc for each copy. Let two of the
leaves have union which consists of the 4 cycles ABCD, and A'B'C’'D’ on the
remaining points.

To obtain 1 FY'Y, let the third factorbe AD, BC, A'B', D'C’' andadd B'C'D/,
BCD to the packing.

To obtain 1 F H, let the third factor be AA', DD', CB, C'B' and add A'B'C’,
ABC to the packing.

To obtain 1 F'S, we start with 1 F'H (obtained from previous step) leave but en-
sure that D'CB is a block. We then remove D'CB and add DCB. (See Diagram
1). .

For \ = 4(6)

(@) 00,22,4 can all be obtained by doubling (\ = 2).
(b) Q canbeobtainedby (A =1) + () = 3).

For A = 5(6), take (A = 2) and 1F — 0 —, to get a graph AB BC BC CD

BD BD + aone 1F on 6t — 2 points, add BCD to the packing to geta 1FY .

Covering: A = 2(6), Q, oo can be obtained by adding two blocks to a packing.
For A\ > 2; 4,22 can be obtained by doubling a (A = 4). This leaves the case
X\ =2, and excesses 22,4.
Excess2?
In this case we use a (A = 1) nuclear design and a (A = 1) packing. It
will be seen that a () = 1) nuclear design has a leave which consists for
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v = 6t + 2 of t copies of the graph on abcde f whose edges are ab, be, ac,
ad, be. Let us look att — 1 of these. Take the 1 factor from the packing
to have edges ad, be, cf. Thus adding the triangles abd, bec, acf gives an
empty excess on v — 8 points. For the remaining copy of the hexogan and
the triangle abc to the cover. We make sure that on the 8 remaining points
the union of the leaves is two four cycles ABCD, EFGH we add ABC,
ADC, EFG, FHG to get an excess of 22,
Excess 4

We handle this case as follows, first we will exhibit a packing for v = 8.
We then note that by Stern and Lenz [SL] Kg:, K > 1 can be decomposed
intot — 1 orbits of triangles and S one factors. This is also an easy exercise
using Rosa’s Skolem sequence technique. Thus 2 K; can be decomposed
into 2t — 3 orbits of triples and 16 one factors. We can thus find a covering
on6t+ 8 fort > 1 whose excess is 4. v = 14, we do separately.

v=_§
v ={0,1,2,3,4,5}U{A,B}
B=() iAB,i=0...5
(b) A03,B03,A14,B14,A25,B25
) 0+4,1+4,2+14,i€ Zs
(d 024,135

v=14
V=1{0,1,2,3,4,5}U{0",1',2/,3',4',5'} U {4, B}

a) Let F) through Fyo be a one factorization of 2 K¢ on {0',1',2/,3',4' 5'}.
We form triples by attacking these one factors to the points 0, 1, 2, 3,4, 5,
A, B, A, B, respectively.
Add the triples

b) ABi,i=0...5.

¢ [4i+1,i+2)i=0...5,and[0,2,4],[1,3,5].

d) [A,i,i+3],[B,4,i+3],i=0,1,2.

A = 3(6), 1FY from A = 1, and Q from A = 2 with the removal of two
triangles gives a 1FY, 1FH, 1 FF. [We must be careful in coverings to make
sure that if we wish to remove a triangle from an excess that the cover actually
contains that triangle. It is easy to ensure here]. A 1FY and oo will give the 1. F
removing two triangles will givethe 1F3 and 1F — 0—.

A = 5(6). Take (A = 3) cover with excess 1 F'H and (A = 2) cover with
excess 0o, and remove two triangles, to obtaina 1 FY'.

This completes the proof.
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Diagram 1:
The number on the edge indicates which ) = 1 packing it comes from.
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Diagram 1 (continued):
The number on the edge indicates which A = 1 packing it comes from.

We note that the entries in the table where the graph is non-spanning i.e. v = 2
mod6, X = 2,4 andv = 5 mod 6, \ = 1,2,4,5 are all nuclear packings
provided the leave is Q, 2 or co.

For the next part we will need as a basic construction tool a GDD with ¢-groups
of size 6 and blocks of size 3, these exist for all A and ¢t > 3 [H1]. We will also
need a GDD with all groups of size 12 and exactly one group of size 18, this can be
obtained by multiplication of a GDD [3; 1,4] [H1] and GDD [3;1,4,3*] [HR]
by 4.

Definition: The defect graph for a set of blocks of size 3 on v points with ) repli-
cations has {z, y} an edge with label —k if {z, y} is in A — k blocks, and with
label +k if {z, y} is in X + k blocks. [i.e. leaves have negative labels and excesses
positive labels.]

Lemma 1. Let P be the number of blocks ina PD(v;3,)\) and N be the num-
berof blocks inan ND(v;3,)\) then P — N

(@@ =0vodd
(b) > [#] v even, except v=2(6), X = 3(6)
© > [L]v=2(6),) = 3(6).

Proof: We think of proceeding from a packing to a covering by adding as few
blocks as possible to the packing, and removing blocks from the system if there is
a triangle in the defect all of whose labels are 1.

The following table summarizes the results. The total defect is the sum of the
labels on all edges.
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Total Defect Minimum num- A: Total excess B: Needed Bound on
from ber of triangles from adding  excess P-N-= [Ai-ﬂ]
packing toremove the  these triangles for covers

negative edges

6t -3t 3t 61 3t t
6t+2,0Z£3(6) —(3t+1) 3t+1 6t+2 3t+2 t
6t+2,A=3 —(3t+4) 3(t-1)+7 6t+8 3t+4 t+1
leave 1 F3

other leaves —(3t+4) 3(t-1)+5 6t+2 3t+4 t—1
6t+4 —(3t+3) 3t+2 6t+3 3t+3 t

We have that the nuclear design is the packing design except when the leave is
1F,1FY or06.

Definition: A t-nucleus will be a packing on 6¢ vertices whose leave is t disjoint
copies of the graph whose vertices are a, b, c, £(a), £(b), £(c) and whose edges
are ab ac bc al(a) b2(b) cf(c).

Lemma 2. Let (V, B) be a packing whose leave is 1F,1FY,1FH,1FYY,
1FS. Then if (V,B) is a packing containing blocks which when added to the
leave form a t-nucleus, on 6t + u points u = 0,2,4 u = 8 if v = 2(6),
)\ = 3(6)), then (V, B) { triangles of the t-nucleus is a nuclear design}.

Proof: Let (V, B') be the packing - {the triangles of the t-nucleus}. By Lemma 1
this will be a nuclear design, it can be completed to a covering. We add blocks for
(a,b,2(a)) (b,c,2(b)(c,d,£(a)) to the t-nucleus to get a cover whose excess is
(a,£(c)) (b,£(a)) (c,£(b)). (See Diagram 2).

For v = 2(6) X # 3(6), Let AB be the points not in the nucleus and a any
point in the nucleus add the block (A, B, a) to complete the 1 F'Y excess.

For v = 4(6), Let ABC D be the points not in the nucleus and leave AB, CD,
BD add blocks {ABC}, {ABD} to getexcess BA,CA, AD.

Forv = 2(6), A = 3(6), Let ABCD, EFGH be the points not in the nucleus.
The following table gives the desired excess, alwaysa 1FYY .

Leave Type Leave Blocks Added Excess

1FYY ABCBDBEFGF FH ABCACD EFGEFH ABACADEF EGEH
IFH ABBC BEDEEFGH ABC DEFCBEDGH ACBCCEDH DGDF
1F5 AB ACAD AF AFGH ABCEADCGH AFE EFEAEDCHCBCG

Lemma 3. There is a packing for v = 6t + 2, A\ = 3(6) which has a leave
of 1\FYY,1FH,1F5, and has a (t — 1) -nucleus. Thus the packing minus the
nucleus is a nuclear design.

Proof: We note in the construction from the (A = 1) packing that one of the
triangles added to the packing from each six point graphs is precisely the one we
want to remove for a nucleus. (See Diagram 1).
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1(c)

I(a)
I(b)
1(c)

>

{a, b, 1(a)}

+ ©, .00
{a, c, 1(c))

(a)

{a, b, 1{a)}

b 1(b)
I(c)

/ (a)
+ by —> b 1(b)

{a, ¢, 1(c)) /
C
{a, A, B)
A a 1(c)
B
(b)
A
{A, B, C}
D+ Boy — > C D
B
(c)
A
° CO—eo— @0
{A, B, C)
{A, B, D)
+ {E, F, G) —> @8
{E, F, H) E
®
F
(d)
Diagram 2
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c
A D B E
{A,8,C) l
B 3 + 0EF ——» A
(c,B,E)
{0, 6, H) . o 6
c F
c @—®H H
(e)
B E
A F
F c (A, B,C)
+ €. a0 —» D A
A {C, G, H) c
(A, F,E) B G
E D l
c &——@H " H

Diagram 2 (continued)

Lemma 4. The following designs exist.

(@ ND(6;3,1); ND(8;3,1)

(b) ND(16;3,1); ND(22;3,1) with a subsystem of order 4 whose leave
consists of a 3 -star which comes from the subsystem and a nucleus on 12 ;
resp. 18 points.

(¢) ND(10;3,3), with a subsystem of order 4 whose leave consists of a 3
star which comes from the subsystem and a nucleus on 6 points. (Such an
ND(10;3,1) does not exist).

Proof:
(a) Throw away any block from a packing.
(b) v=16,18. We start with a subsystem of order4,0on1,2,3,4.

We need a decomposition of K5 and K;g into some triples and 5 one factors,
Fy, Fy, B>, B, Fy,sothat Fy is part of a nucleus. We now add blocks of the form
{izy, Ty € F;,1 < i < 4}. (Ideally we would like to decompose K¢ but it is too
small to contain a nucleus).
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Kiz: Blocks [0+ 41+ 15+14],i=0,...11 mod 12. The five factors are
Fy =[1,1+6] 1= 0...5, F, through F; from the decomposition of the distances
2 and 3 mod 12 into 1 factors [SL]. The nucleus is Fo U {[0 1 5],[2 3 4]}.

Kijg:Blocks [O+11+15+4],[0+16+i8+4] mod18,i=0,...,17. The
five factors are Fp = [1,1+9]i=0...9, F} through F4 from the decomposition
of the distances 3 and 7 mod 12 into 1 factors.

The nucleus is Fo U {[0 15],[2 3 71,[4 5 91}.

(¢©) v =10 Asin (b) but we need a decomposition of 3 K¢ into triples and 13
one-factors, so that one of the one factors is part of a nucleus.

3Ke: Blocks[024],[135]. Fy = [1,i+3]1 mod6, Fy, F, from decomposing
distance 1 mod 6. F5 through F}; from decomposing 2 K¢ into one factors.
The nucleus is Fp U [0 2 4].

Theorem 1. For all v,\,v > 6, an ND(v;3,)\) exist having the maximal
number of blocks that arithmetic and degree conditions allow. i.e.

(@) For v odd the packing is a nuclear design.
(b) Forv even (except v = 2, A\ = 3), the nuclear design has P — | %] blocks.
(©) For X\ = 3(6),v = 2(6) the nuclear design has P — | ¢| + 1 blocks.

Proof: By construction we need only consider A = 1, v even.
Ifv=0(6),v > 18, ThereisaGDDI[3;1,6,6¢] [H1]. Builda ND(6;3,1)
on each group.
If v = 2(6), v > 20 There is a GDD[3;1,6,6t] [H1]. For each group g
build a ND on the set g U {AB}.
If v = 4(6) then
(i) v=12t+4,v > 36,UseaGDDI[3;1,12,12¢] [H1] using the ND on
16 points with a subsystem of order 4.
(i) v=12¢+10,v > 54,useaGDD[3;1,12¢t + 6,18*] [HR] puta ND
on 16 points with a subsystem of size 4 on {A, B, C, D} U g for groups of
size 12 and a N D on 22 points with a subsystem of size {4, B,C,D}U g
on the unique group of size 18.

The small designs for v < 12 are trivial, the missing cases are thus v =
12,14 ,28,34,46.

= 12, Take the ST'S(014), (068) mod 13, remove 0 and the blocks 197, 458.

The remaining 4 cases will be done by taking V = {A, B,C, D} x Z¢:, and

a subsystem of size 4 on {A, B, C, D} and decomposing Zg, into two blocks, a

nucleus and 4 1-factors, the one factors are always obtained by decomposing two

distances.
v= 14

BLOCKS [0 1 5] mod 12 — A; A = (015)(348)
ONE FACTORS: Decompose distances 2, 3 [SL]
NUCLEUS: A U distance 6 mod 12
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v=28
BLOCKS[0310][02 8 mod24;[015]mod24 —A; A=(015)
(348) (67 11) (910 14) (12 13 17).
ONE FACTORS: distances 9, 11 mod 24 [SL]
NUCL];.PS: A U distance 12 mod 24
v=

BLOCKS: [0 10 22] [0 2 9] [0 11 14] mod 30; [0 1 5] mod 30 — A;
A=(015)(349) (67 11);(9 10 14),(12 13 17) (15 16 20).
ONE FACTORS: distance 6,13 mod 30 [SL]
NUCL‘]%JS: A U 15 mod 30

v=

BLOCKS: [0 12 26] [0 10 17] [0 6 19] [0 3 11] [0 18 20] mod 42;
[015]mod42 —A; A=(015)(348)(6711)(91014)(121317)
(15 16 20) (18 19 23) (21 22 26).

ONE FACTORS: distance 9,15 mod 42.

NUCLEUS: A U distance 21 mod 42.
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