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Abstract. In this paper we construct pairwise balanced designs (PBDs) having block
sizes which are prime powers congruent to 1 modulo 5 together with 6. Such a PBD
contains n = 5r + 1 points, for some positive integer r. We show that this condition is
sufficient for n > 1201, with at most 74 possible exceptions below this value. As an
application, we prove that there exists an almost resolvable BIB design with n points
and block size five whenever n > 991, with at most 26 possible exceptions below this
value.

1. Introduction.

A pairwise balanced design (or, PBD) is a pair (X, .A) such that X is a set of
elements called points, and A is a set of subsets (called blocks) of X, each of
cardinality at least two, such that every unordered pair of points is contained in a
unique block in A. If v is a positive integer and K is a set of positive integers, each
of which is not less than 2, then we say that (X, A) is a (v, K)-PBDif | X| = v,
and |A| € K forevery A € A.

Pairwise balanced designs are of fundamental importance in combinatorial de-
sign theory, being of interest in their own right, as well as having many applica-
tions in the construction of other types of designs. In general, one usually is inter-
ested in constructing (v, K') -PBDs for some specified set K. Denote B( K) = {v:
there exists a (v, K)-PBD}. A set K is said to be PBD-closed if B(K) = K.
For the concepts not defined in this paper, the reader is referred to [1].

In this paper, we investigate the set B(P), where P = {6} U P, 5, and P 5
is defined to be the set of prime powers congruent to 1 modulo 5. According to
Wilson’s theory of PBD-closed sets ([15]), there exists a constant N such that, for
allv > N, v € B(P) if and only if v is congruent to 1 modulo 5. Unfortunately,
this theory does not yield any reasonable upper bounds on N. However, we are
able to give an upper bound on N: N < 1201. Further, there are at most 74
positive integers congruent to 1 modulo 5 for which an (n, P)-PBD does not exist.
The possible exceptions are those shown in Table 1.
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Table 1

21,26, 36,46, 51, 56, 86, 116, 141, 146, 161, 166, 171, 196, 201, 206, 221, 226, 231,
236, 261, 266, 276 , 286 , 291, 296, 316, 321, 326, 336, 351, 356, 376, 386, 411, 416,

1076 1106 1121 1156 1196

For further reference, we name the set of these 74 possible exceptions Q.

In Section 6, we shall mention an application of this result to another type of de-
signs. A (v, k, k—1)-BIBD is said to be almost resolvable , denoted by AR(k, v),
if its blocks can be partitioned into some families (parallel classes) such that each
family forms a partition of X \ {z} for some z € X (z is called a singleton). 1t is
known ([7]) that an AR(k, v) exists only if vy = 1 (mod k). We shall show that
AR(S) D B(P). Further discussion shows that the integers underlined in Table
1 are also in AR(S). Here AR(5) = {v: an AR(5,v) exists} .

2. Recursive constructions for PBDs.

In this section, we describe several recursive constructions for PBDs with block
sizes from P = {6} U P, 5, where P; s = {n: n > 11 is a prime power such that
=1 (mod 5)}.
Definition 2.1: A TD(k,n)-TD(k,m) is a quadruple (X, G, H, A), which sat-
isfies the following properties:
(1) X is a set of cardinality kn;
(@) G={Gi:1< i< k}isapartition of X into k groups of size n;
(B) H={H;:1 < i< k} where each G; D Hy,and |Hy|=m,1 < i< k;
(4) Adisasetof n — m? blocks of size k, each of which intersects each group
in a point;
(5) every pair of points {z,y} from distinct groups, such that at least one of ¢
and y is in Ui <i<k (Gi — H;), occurs in a unique block of A.

If m = 0 ina TD(k,n)-TD(k,m), the design becomes a T D(k,n). It is
well-known that a T D(k,n) is equivalent to £ — 2 mutually orthogonal Latin
squares (MOLS) of order n. Denote by N(n) the maximum number of MOLS of
order n. For a list of lower bounds on N(n), n < 10,000, we refer the reader to
Brouwer [2] and Todorov [12].

Definition 2.2: An incomplete PBD (or, IPBD) is a triple (X, Y, A), where X is
aset of points, X DY, and A is a set of blocks which satisfies the properties:
(1) foranyA€ A,|[ANY|<L1;
(2) any two points, not both in Y, occur in a unique block;
(3) any two points, both in Y, do not occur in any block.
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We say that (X,Y,A) isa (v, w, K)-IPBDif | X|=v,|Y| = w,and |A| € K
for every A € A. Denote IB,,(K) = {v: a (v, w, K)-IPBD exists}.

The following construction is referred to as the singular indirect product (SIP)
(see [8, 10]).

Theorem 2.3. Suppose K is a set of positive integers and uw € K ; suppose v, w
and a are integers such that0 < e < w < v; and suppose that following designs
exist:

(1) aTD(u,v—a)-TD(u,w—a);
(2) a(v,w,K)-IPBD; and
(3) a(u(w—a) +a,K)-PBD.

Then u(v — a) + a € IB,(K) N IByw-a)+a(K). Hence, in particular, u(v —
a) + a € B(K).

If we let w = a in the SIP, we obtain the singular direct product (SDP).

Theorem 2.4. Suppose K is a set of positive integers and u € K. Suppose v
and w are non-negative integers such thatw < v, there exists aT D(u,v — w), a
(v,w, K)-IPBD, and a(w, K)-PBD. Thenu(v —w) + w € IB,(K) NIB,(K)
NIBy( K). Hence, in particular, u(v — w) + w € B(K).

If we further specialize this construction by letting w = a = 0, we obtain the
Direct product (DP).

Theorem 2.5. Suppose K is aset of positive integers andu,v € K . If there exists
aTD(u,v), thenuv € IB,(K) NIB,(K). Hence, in particular, uv € B(K).

Lemma 2.6. Ifn,m € P andn < m, then mn € B(P).
Proof: A T'D(n,m) exists since m is a prime power. Apply Theorem 2.5. [ ]
Lemma 2.7, Ifn€ B(P) andn # 11,31, then6(n—1) + 1 € B(P).

Proof: Sincen € B(P) andn # 11,31,n=1 (mod 5) and N(n—1) > 4.
There exists aT D(6,n— 1). Apply Theorem 2.4 withw = 1. 1

In order to apply SIP, we need incomplete transversal designs. We use construc-
tions given in [3, 14] to produce them.

Lemma 2.8. Suppose there exist: aT D(k,m),aTD(k,m+1),aTD(k+1,t),
and0 < u < t. Then there exists aT D(k, mt + u) -TD(k, v).

Lemma 2.9. Suppose thereexist: aT D(k,m),aTD(k, m+1),aTD(k, m+2),
aTD(k+2,t),aTD(k,u), and0 < u,v < t. Then there exists aT D(k, mt +
v+ v)-IT'D(k,v).

Lemma 2.10. Suppose there exist: aT D(k, m), aTD(k,m+1),aTD(k, m+
2),aTD(k+u+1,t),andaTD(k+ 1, m+ u). Then there exists aT D(k, mt+
u+ v)-TD(k,v), where0 <v<t—1.
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Corollary 2.11. Suppose there exist: a TD(8,t), a TD(6,k), where 0 <
a,k < t. Then there exists aTD(6,7t+ k+ a)-TD(6,a).

Corollary 2.12. Suppose there exist: aT D(7T+w,t),aTD(6,m),aTD(6,m+
1),aTD(6,m+2),andaT D(6, m+w). Then there exists aT D(6 , mt+w+a) -
TD(6,a) for0 < a<'t.

A group-divisible design (or, GDD), is a triple (X, G, A), which satisfies the
following properties:
(1) @G isapartition of X into subsets called groups,
(2) A is a set of subsets of X (called blocks) such that a group and a block
contain at most one common point,
(3) every pair of points from distinct groups occurs in exactly A blocks.

The group-type of a GDD (X, G, A) is the multiset {|G|: G € G}. We usually
use an “exponential” notation to describe group-type: a group-type 1°.27.3% ..
denotes ¢ occurrences of 1,j occurrences of 2, etc. As with PBDs, we will say
thata GDD is a (K, \)-GDD if |A| € K for every A € A. If the group-type is
T, we further write a ( K, \)-GDD as ( K, )) -GDD(T'). We shall only deal with
the case A = 1 until Section 6. In this case, we omit ) in the above notations.

We often construct PBDs from GDDs by filling in the groups as follows.

Theorem 2.13. Suppose there exists a P-GDD on v points such that for some
Gy there exists a (|Go| + w, P) -PBD, and for any other group G there exists a
(|G| + w,w, P)-IPBD. Then there exists a (v + w, P)-PBD. Further, v+ w €
IBIGoI+W(P) .

Proof: An analogue to SDP construction. 1
If w= 0 or 1, we have

Theorem 2.14. Suppose there exists a P-GDD on v points such that for each
groupG, |G| + € € B(P), wheree = 0 or 1. Thenv + € € B(P).

Corollary 2.15. Ifv € B(6), N(u) > 4,andu+ € € P, wheree = 0 or 1, then
vy + € € B(P).

Proof: Since v € B(6), there is a {6 }-GDD(1"). Give weight u to each point
and use a T D(6,u) as input design, which exists since N(u) > 4. We have a
P-GDD(u"). Apply Theorem 2.14. |
Using Wilson’s Fundamental Constructions for GDDs ([15]) and Theorem 2.13,
we have the following lemmas, which are essentially Theorem 2.17 and Theorem
2.20 in [16], where R% should be replaced by P, and the proofs are still valid.

Lemma 2.16. SupposeN(t) > 12,0 < s <t. Then, B(P) D {5t+1,15s+1}
implies65t+15s+1 € B(P). Further, if 5t+a € IB,(P) and15s+a € B(P),
then65t+ 15s+ a € B(P).
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Lemma 2.17. Suppose N(t) > 15,0 < u <t,0 < w < t. Then, B(P) D
{5t+1,15u+ 1,5w + 1} implies 75t + 15u + Sw + 1 € B(P). Further, if
5t+ a € IB,(P), at least one of 15u + a and Sw + a belongs to I1B,(P), and
the other is in B(P), then75t + 15u+ Sw+ a € B(P).

3. Thecasev =1,6 (mod 15).
As an easy corollary of the known results on B(6) (see [9, 17]) we have

Lemma3.1. Ifv=1,6 (mod 15) is a positive integer and v is not in Table 2,
thenv € B(6) andv € B(P).

Table 2

16,21, 36,46, 51, 61, 81, 141,166, 171,196, 201, 226, 231, 246 , 256 , 261, 276, 286, 291,
316,321, 336, 346, 351, 376, 406, 411, 436, 441, 466, 471, 486 , 496, 501, 526 , 561, 591,
616,621, 646, 651, 676,706, 711, 736, 741, 766, 771,796, 801,831, 886, 891, 916, 946,

1396, 1401, 1456 , 1461, 1486, 1491, 1516, 1521, 1546, 1611, 1641, 1671, 1816, 1821,
1851, 1881, 1971, 2031, 2241, 2601, 3201, 3471, 3501, 4191, 4221, 5391, 5901.

We shall show, in this section, that the integers underlined in Table 2 are also in
B(P).

Theorem 3.2. Supposev = 1,6 (mod 15) is a positive integer. If v is not in
Table 2, orv is an underlined number in Table 2, thenv € B(P).

Proof: We need only discuss those numbers underlined in Table 2. The first three
and 256 are prime powers belonging to P. Lemma 2.6 takes care 0f 246,486,496 ,
891. Corollary 2.15 takes care of 466 = 31.15+ 1, 1221 = 111.11 and 4191 =
381.11. Lemma 2.7 takes care of 1141. From a (325,5,1)-RBIBD (see [16])
we can obtain a (406, {6, 81})-PBD by adding infinite points to its 81 parallel
classes. Therefore, 406 € B(P). Lemma 2.16 and Lemma 2.17 also take care of
some numbers shown in Table 3 and Table 4. The remaining numbers are all done
by SIP, as shown in Table 5. The required incomplete TDs are all constructed by
Lemma 2.8 and Lemma 2.11. 1

Table 3 Applications of Lemma 2.16

t=16, a=1 1071 1101 1131 1161 1176 1191 1251
t=17,a=6 1186
t=25,a=1 1641 1881
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Table 4 Applications of Lemma 2.17

t=16,a=1 1246 1276 1401 1461

t=19, a=1 1481 1491 1516 1521 1546 1611 1671
t=25,a=1 1971 2031 2241

t=31,a=1 2601

t=37,a=1 3201 3471 3501

t=17,a=6 1396 1456
t=23,a=6 1816 1821 1851
t=53,a=6 4221

t=71, a=6 5391 5901

Table 5 Applications of SIP

(v equation) w (PBD with flat) incomplete TD u(w—a)+a
346=6(66 —11)+16 11 66=6.11 TD(5,56) —TD(6,1) 16
436=6(72 —2)+ 16 6 176 72=79+7+2 16
526 = 6(87 —2) + 16 6 91 87=7.11+8+2 16
616 = 6(102 —2) + 16 6 106 102=7.13+9+2 16
646 = 6(107 —2) + 16 6 111 107=157+2 11
676 = 11(61 — 1) + 16 6 66 TD(6,61) —TD(6,1) 11
736 = 6(122 —2) + 16 6 126 122=7.16+8+2 16
796 = 6(132 —2) + 16 6 136 132=7.17+11+2 16
886 =6(147 —2) + 16 6 151 147=8.12+2 16
916 = 6(152 —2) + 16 6 156 152=7.19+17+2 16
1096 =6(182 —2)+16 6 186 182=723+19+2 16

4. A preliminary bound.

In this section, we shall show that v € B(P) whenever v > 3401 andv = 1
(mod 5). We first use Lemma 2.17 to prove

Theorem 4.1. Suppose there exists a series of positive integers {t;}i=1 2., such
that for each ¢

(1) N() 215,

(2) St;+1 € B(P),

(3) t; <tiv1 < (61, —78)/5.
Thenv € B(P) wheneverv > 75t + 1181 andv = 11 (mod 15).

Proof: For each 1, applying Lemma 2.17 witht = ¢;,78 < u < t;and w = 2, we
have 75t; + 15u+ 1 € B(P) since B(P) D {15u + 1,11} from Theorem 3.2.
This gives an interval [75¢; + 1181, 90¢; + 11] such that v € B(P) whenever
v = 11 (mod 15) and v is in the interval. By condition (3), each interval is
overlapped with the next interval. The conclusion then follows. 1
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Lemma 4.2. v € B(P) wheneverv =11 (mod 15) andv > 11606.

Proof: Take a series {;}i=12,.. as follows:

139,151,163,169,181, 199,223, 241,271,307, 349, 397,457, 523,
607,709,829,967, 1129, 1327, 1567, 1861, 2203, 2617, 3121, 3727, ...

tia1=t;+6 if j >26.

We check the conditions in Theorem 4.1. The first 26 terms are all prime powers
congruent to 1 modulo 6 and the other terms are all odd and greater than 3603.
From [3] we have N(t;) > 15. Sincet; = 1 (mod 6) and 5¢t; + 1 = 6
(mod 15), we have from Theorem 3.2 that 5¢; + 1 € B(P) if 5¢;+ 1 > 1156,
namely, ¢; > 231. For the first seven terms it is easily verified that 5¢; + 1 €
B(P). The condition (3) can also be checked easily. We then apply Theorem 4.1
to obtain a bound v > 75.139 + 1181 = 11606. 1

Lemma 4.3. v € B(P) wheneverv = 11 (mod 15) and 3401 < v < 11606 .

Proof: We again use Lemma 2.17 with parameters shown in Table 6. N(t) > 15
is obvious since t is a prime power. For any v under consideration, v is in one of the
intervals in Table 6. We write v = 75¢+ 15u+ 176, where 176 = 11.16 € B(P).
Whena = 1,5t + a € B(P). If 15u+ 1 € B(P), we have v € B(P) by
Lemma 2.17. If 15u + 1 ¢ B(P), it is readily checked by Theorem 3.2 that
15(u — 1) + 1 € B(P). We then write v = 75t + 15(u — 1) + 191 where
191 € B(P), and obtain v € B(P) also. Whena = 6,5t+ 6 € IBs(P). If
15u+6 € IBs(P),wehavev € B(P) byLemma2.17. If 15u+6 ¢ IBg¢(P),it
isreadily checked by Theorem 3.2 that 15(u— 1) + 6 € IBg(P) for 24 <u<t.
Therefore, v = 75t + 15(u — 1) + 191 € B(P). This completes the proof. |

Table 6 Applications of Lemma 2.17

t a St+a i v

127 1 636 € B(6) 0-127 9701-11606

109 1 546 € B(6) 0-109 8351-9986

103 1 516 € B(6) 0-103 7901-9446
89 6 451 € B(6) 24-89 7211-8186
79 1 396 € B(6) 0-79 6101-7286
73 1 366 € B(6) 0-73 5651-6746
61 1 306 € B(6) 0-61 4751-5666
53 6 271 € B(6) 24-53 45114946
49 1 246=416 € IBs(P) 049 3851-4586
43 1 216 € B(6) 043 34014046

245



5. The spectrum.
It remains to discuss the values v = 11 (mod 15) and v < 3401.

Lemma 5.1. Ifv = 11 (mod 15) and 1211 < v < 3401, thenv € B(P).

Proof: Apply Lemma 2.6 with m = 151, n= 11 to obtain 1661 € B(P). Apply
Lemma 2.17 with (¢,a) = (16,1), (19,1), (25,1), (27,1), (31,1), (37,1)
and (23,6). We can take suitable v (Theorem 3.2) and w to cover the interval,
noticing that 11, 41, 71, 101, 131, 176, 191 € B(P). These leave v = 1781,
for which we use SIP construction by writing 1781 = 6(296 — 1) + 5. Since
301 € B(P), we obtain 1781 € B(6,11), hence 1781 € B(P). |

Lemma 5.2. B(P) D {176,341,371,506, 551 581,611,656 ,671,731,791,
836,851, 1001, 1136, 1166 }.

Proof: We apply direct product to obtain v € B(P) where 176 = 11.16, 341 =
11.31, 656 = 16 .41, 671 = 11.61, 1136 = 16.71. Corollary 2.15 works for the
values: 836 = 76.11, 1001 = 91.11, 1166 = 106.11. A (405,5,1)-RBIBD
exists (see [4]), from which we can add infinite points to parallel classes to obtain
a (506, {6,101})-PBD. Therefore, 506 € B(P). The SIP will work for the
other five values, where 371 = 6(61 — 1) + 11,551 = 6(91 — 1) + 11,611 =
6(101 — 1) + 11,731 = 6(121 — 1) + 11 and 791 = 6(131 — 1) + 11, and the
required 66,96, 106, 126, 136 € B(6) all come from Table 2. We apply SIP also
for the remaining values to get 581 € B(6,71) and 851 € B(6,101). From a
(85,5, 1)-RBIBD ([16]) we have 106 € IBj;(6). Write 581 = 6(95 —10) +71.
The required TD(6,95) —T D(6,10) comes from Lemma 2.11 with95 = 7.11+
8 + 10. Similarly, a (125,5,1)-RBIBD yields a (156,31, {6 })-IPBD. Write
851 = 6(139 — 14) + 101. The required TD(6,139) — T D(6, 14) comes from
Lemma212withm=7,t=17,w=6,a=14and139=7.17+ 6+ 14. 1

Lemma 5.3. Forv = 11 (mod 15), there are at most 37 values of v shown in
Table 1, for which a (v, P)-PBD does not exist.

Proof: There are all together 80 values of v such that v = 11 (mod 15) and
11 < v < 1211. Among them there are 27 prime integers. The other 16 values are
contained in B( P) from Lemma 5.2. This leaves 37 values below 1211. Combine
Lemma 4.2, Lemma 4.3, and Lemma 5.1, the conclusion then follows. [ |

Theorem 5.4. For any positive integerv = 1 (mod 5) there exists a (v, P) -
PBD, where P = {6}U Py s and P15 = {m:n > 11 is a prime power such that
n=1 (mod 5)}, with 74 possible exceptions shown in Table 1.

Proof: Combining Theorem 3.2 and Lemma 5.3. 1
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6. Application to almost resolvable BIB designs.

As mentioned in Section 1 we shall show here that AR(5) contains all positive

integers v = 1 (mod 5) except posibly when v is an integer not underlined in
Table 1.

Let (X,G,A) bea (K, )\)-GDD(T). For G € G, let P¢ be a subset of A such
that the blocks in Pg form a partition of X \ G. Pg is called a parallel class with
hole G. The GDD is called a (K, \)-frame with type T if A can be partitioned
into disjoint parallel classes with holes. The idea of a frame was first introduced by
Hanani [6] and the concept was popularized by Stinson [11]. This notion is useful
in the construction of resolvable and almost resolvable designs. In this section
we only deal with ({5}, 4)-frames and we omit the parameters for simplicity of
notation.

The following Lemmas are slight modifications of the constructions in [11].

Lemma 6.1. Suppose there is a frame of type m™. If N(t) > 4, then there exists
a frame of type (mt) ™.

Lemma 6.2. Suppose there is a frame of type {t1,t2,... ,ta}, ande > 0. For
1 < i < m, suppose there is a frame of type T; U {e}, where ) ;.. t = t;. Then
there is a frame of type {€} U(Ui<i<aT) .

Lemma6.3. Let(X,G,A) beaGDD, and letw: X — Z*U{0} (we say thatw
is a weighting). Foreach A € A, suppose there is a frame of type {w(z): = € A}.
Then there is a frame of type {}_,cc w(z): G € G}.

We also need

Lemma 6.4. Letv = p™ be any prime power and k > 2 such that k is a divisor
ofv — 1, then there exists an AR(k,v).

Proof: Let X = GF(v). Forany )\, u, 2 € GF(v) satisfying u # 2z, A # 1
and \¥ = 1, form ablock B, = {u,Au+ (1 — Xz, \2u+ (1 = X2)z,... A\!
u+ (1 — \¥1) 2}, For any element v in this block, the triple u’, 2, X will deter-
mine the same block. Itis easy to see that elements in this block are indeed distinct,
therefore, for fixed z and )\, we can obtain (v — 1) /k blocks, which form a par-
allel class with singleton z: And for a fixed A, we can obtain v(v — 1) /k blocks
A, which can be partitioned into v parallel classes. Then (X, .A) is the required
AR(k,v). In fact, for any unordered pair {u, w}, let z; = (w — Mu) /(1 = )Y,

i=1,2,...,k— 1. Then z; are pairwise distinct, and {u, w} is contained exactly
in the blocks B,, z = z;, (1= 1,2,... , k— 1) of the parallel class with singleton
;. 1

Notice that an AR(5,v) is also a frame of type 1*. Therefore, a frame of type
1™ exists whenever n € Py 5. By Lemma 6.3 we can obtain a frame of type 1Y for
v € B(P) if we have an AR(S,6).
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Lemma 6.5. An AR(5,6) exists.

Proof: X = Zs, A = {Z¢ — {i}: i € Z¢}. Every block Zg — {1} form a parallel
class with singleton 1. 1

Lemma 6.6. AR(5) D B(P).

Proof: For any v € B(P) thereis a (v, P)-PBD, namely, a P-GDD(1"). Give
every point weight one and apply Lemma 6.3. Since a frame of type 1* exists for
k € P, we obtain a frame of type 1v. Then, v € AR(5). 1

To further reduce the possible exceptions of AR(5,v) in Table 1, we need an
AR(5,21),an AR(5,26) and an AR(S,36), where the first two designs were
pointed out to us by Alan Hartman and Zvi Yehudai.

Lemma 6.7. AR(5) D {21,26}.

Proof: Develop the following parallel class (with hole {20 }) modulo 21 to con-
struct an AR(5,21):

{0,1,2,4,9},{3,7,10,14,15},{5,11,13,16,19},{6,8, 12, 17, 18}.

Develop the following parallel class (with hole {25 }) modulo 26 to construct an
AR(5,26):

{0,10,13,14,17},{1,3,7,12,22},{2,8,20, 21,23},
{4,5,9,11,19},{6,15,16,18,24}.

Lemma 6.8. An AR(5,36) exists.

Proof: Let X = Zjp andG = {G;: 0 < i < 5} where G; = {i,i+ 6}. Let
A={{i,i+1,i+4,i+9,i+11}:1i € Z;,}. Itisreadily checked that (X, G, A)
isa({5},2)-GDD(2°%). Take {i+ 10,i+ 11,i+2,i+7,i+ 9}and{i+4,i+
5,1+ 8,1+ 1,i+ 3} as a parallel class with hole {#,i + 6 }. The GDD is also
a ({5},2)-frame of type 2. From the proof of Theorem 3.11 in [5] we have an
RTD(6,3) of Index 2. Deleting one group yields an RT'D(5,3) of Index 2. A
modification of Lemma 6.1 will produce a ({5}, 4)-frame of type 6¢. Since a
frame of type 1° exists from Lemma 6.4, applying Lemma 6.2 with e = 0, we
obtain a frame of type 13¢. Therefore, 36 € AR(5). §

Lemma 6.9. Supposeu € AR(5) andm+¢e € AR(5),¢ € {0,1}. IfFN(m) >
4, thenum + € € AR(5).

Proof: Applying Lemma 6.1 with a frame of type 1%, we have a frame of type
m*. Further applying Lemma 6.2 we obtain a frame of type 1%™*¢, ]
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Lemma6.10. AR(5) D {56,166,206,221,231,276,286, 316,321, 336, 356,
386,416, 441, 561, 1046 }.

Proof: Apply Lemma 6.9 with the following expressions:
56=115+1, 166=11.15+1, 206=415+1, 221=11.20+1,

231 =11.21, 276 = 11.25+1, 286=26.11, 316 =21.15+ 1,
321=16.20+ 1, 336=6.56, 356=715+1, 386=11.35+1,
416 = 26.16, 441=11.40+1, 561=16.35+1, 1046=11.59+ 1.

Lemma 6.11. 146,171 € AR(5).

Proof: From Wilson [15,Lemma5.2],¢*+¢*—q+1 € B(g+1,¢> —q+1,¢*+1).
Taking ¢ = 5 produces 146 € B(6,21,26). So, 146 € AR(S). By Mullin [9,
Lemma 3.13], there exists a T"D(6,28)-T'D(6,3). Adding three new points to
groups and applying SIP produces a (171, {6,21})-PBD. So, 171 € AR(5). 1

Lemma 6.12. 651,686,706,716,746,771,776 € AR(S).

Proof: Give weight one to each point in a T"D(26,25) except m points in some
group, to which we give weight six each. Using a (31,6,{6})-IPBD as input
designs we obtain a {6, 26 }-GDD of type 25% (25+ m)!. Adding one new point
to the GDD produces a (651 + 5m, {6,26,26 + 5m}, 1)-PBD.

Taking suitable m as shown in Table 7 we know that 26 + Sm € AR(5) and
651+ 5m € AR(5). |

Table 7

651+ 5m 26+ 5m m

651 26 0
686 61 7
706 81 11
716 91 13
746 121 19
771 146 24
776 151 25

Lemma 6.13. 806,831,886,896,926,946,956 € AR(5).

Proof: Give weight six to m points in a group of a TD(26, 31) and weight one
to other points. Using a (31,6, {6 })-IPBD as input designs produces a {6, 26 }-
GDD of type 31%(31 + 5m)'. Hence, 806 + 5m € B(6,26,31,31+ 5m).
Taking suitable m as shown in Table 8, such that 31 + 5m € AR(S), we know
that 806 + 5m € AR(5). 1
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Table 8

806+ 5m 31+ 5m ™m
806 31 0
831 56 5
866 91 12
896 121 18
926 151 24
946 171 28
956 181 30

Lemma 6.14. 1106, 1121, 1156,1196 € AR(5).

Proof: Start with a TD(26,41) and do the similar construction as in Lemma
6.13. Taking m = 8,11, 18 and 26, since 81,96, 131,171 € AR(S5), we have

1066 + 5m = 1106, 1121, 1156, 1196 € AR(S).

Lemma 6.15. AR(5) D {446,536,566,621,626,741,801,1016, 1076 }.

Proof: We use SIP construction to show that n € B(6,21,26,56). Therefore,
n € AR(5) since 6,21,26,56 € AR(S). We give the parameters in Table 9.
From RBIBDs we have 81 € IBj6(6) and 106 € IB1(6). 176 € IB;(P)

comes from Lemma 5.2. For the incomplete TDs, numbers 73 and 168 come from

Lemma 2.12 and others from Lemma 2.11.

Table 9 Applications of SIP

n=u(v—a)+a w ( PBD with flat) incomplete TD u(w—a)+a
446 = 6(81 — 8) + 8 16 81 €IBi(6) 73=79+2+8 56
536=6(91-2)+2 6 91 € B(6) 89=7.11+8+4 26
566 =6(106 —14) + 14 21 106 € IB21(6) 92=7.11+8+7 56
621 = 6(106 —3) + 3 6 106 € B(6) 103=7.13+9+3 21
626 = 6(106 —2) + 2 6 106 € B(6) 104=7.13+9+4 26
741 =6(126 —3) + 3 6 126 € B(6) 123=7.16+8+3 21
801 =6(136 —3) +3 6 136 € B(6) 133=7.17+11+3 21
1016 = 6(176 —8) + 8 11 176 € IB;;(P) 168=7.23+4+3 26
1076 = 6(181 —2) + 2 6 181 € B(6) 179=725+4 26

Theorem 6.16. AR(5) contains all positive integers v = 1 (mod 5) except
possibly whenv < 986 and v is one of the 26 numbers not underlined in Table 1.

Proof: Combining Lemmas 6.5, 6.7 - 6.8, 6.10-6.15.
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