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A graceful valuation (numbering) of a graph G with m vertices and n
edges is a one-to-one mapping  of the set V(G ) into the set {0,1,...,n} with the
following property: If we define, for any edge e € E(G) with the end vertices
u,v, the value y(e) of the edge e by w(e)= ly(u)-y(v)! then y is a one-to-
one mapping of E (G ) onto the set {1,2,....,n}. A graph is called graceful if it has
a graceful valuation.

An o-valuation y of a graph G is a graceful valuation of G which has the
following additional property: There exists a number y (0<y< |E (G)1) such that
for any edge e € E (G) with the end vertices u,v, it is

min[y(u),y(v)] < ¥ < max{y(u),y(v)].

The concept of a graceful valuation (under the name B-valuation) and of
an o-valuation was introduced by A. Rosa [9]. The term "graceful valuation"
was introduced by S.W. Golomb [5].

Rosa [9] proved the following theorem: If an eulerian graph G is graceful
then 1E(G)1=0 or 3 (mod 4). This implies that |E(G)1=0 (mod 4) for any
eulerian graph G which has an o-valuation. (In this thcorem, an eulerian graph
G is any graph in which the degree of each vertex is positive and even; G does
not have to be connected.)

It is well known that the condition of the above theorem is also sufficient
for cycles (Kotzig [6], Rosa [9]) and for 2-regular graphs with two isomorphic
components (Kotzig [7] proved that a 2-regular graph consisting of two s-cycles
(s even) has an a-valuation). A partial extension for 3 components can be
found in the same paper. In this case, the condition of the above theorem is not
always sufficient.

The following results proved in [2] will be useful in this paper: If G is a
graceful 2-regular graph on 4r vertices then exactly one number x € {1,2,...,4r }
will not be used to label any vertex of G. This number satisfies the inequalities
r<x<3r. The given graceful valuation of G is an a-valuation if and only if
either x=r or x=3r. This number x is called the missing value of the given
graceful valuation. Let us also observe that if G has an a-valuation y with one
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of the two possible missing values (r or 3r), it also has an o-valuation ¢ with
the other possible missing value. To see this, it suffices to put ¢(v)=4r—y(v)
forevery veV(G).

More recently, it has been proved in [3] that the number of graceful valua-
tions of (4k+3)-cycles and the number of o-valuations of 4k-cycles grow
exponentially with k.

For the special case of 2-regular graphs consisting of 4-gons it is known
that such a graph consisting of £ 4-gons has an a-valuation for 1<k <10, k#3;
for k=3, this graph is graceful but it does not have an o-valuation (see [7]). In
this paper, the 2-regular graph consisting of £ 4-gons will be denoted by Ay.

Our first result is given in

Theorem 1. Let k be a positive integer. If the graph A, has an o-valuation
then A 4441 also has an o-valuation.

Corollary. The sequence {A;}fz; contains infinitely many graphs which have
o-valuations.

Proof of Theorem 1. If A; has an o-valuation then the vertices of A; are
labeled by 4k values from the set {0,1,...4k}. Then we have two possibilities
concerning the number 7y from the definition of an a valuation and the missing
value:

A.  y=2k and the missing value is k.
B.  y=2k-1 and the missing value is 3k.

In each case, the numbers <y will be referred to as the "small values (numbers)".
The numbers >y will be called the "large values (numbers)". For our considera-
tions, A4+ will be decomposed into five subgraphs consisting of 4-gons; each
of the first four subgraphs will consist of k 4-gons, the fifth subgraph will con-
tain only one 4-gon. We will construct an o-valuation of A4 by describing
the values of the vertices and of the edges of the 4-gons in each subgraph. The
values of the vertices in each 4-gon in each of the first four subgraphs will be
derived directly from the given a-valuation of Ag.

Subgraph 1. We start with an o-valuation of A, with the missing value k. We
increase the large numbers labeling the vertices of this subgraph by 12k+4 and
leave the small numbers unchanged. The large values will become
14k+S5,...,16k+4, the small values will be 0,...,2k , with the value & missing, and
the values of the edges will be 12k+5,...,16k+4.
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Subgraph 2. We proceed from an o-valuation of Ag with the missing value 3k.
The large values (including the missing value) will be increased by 10k +4, the
small values will be increased by 2k+1. The new large values of this subgraph
will be 12k +4,...,14k +4 (with the value 13k+4 missing), the small values will be
2k+1,...4k ; the values of the edges will be 8k+4,...,12k+3.

Subgraph 3. We take an o-valuation of A with the missing value k, increase
the large values by 8k+3, the small values by 4k+2. We have now the large
values 10k+4,...,12k+3, the small values 4k+2,...,6k+2, (with the value 5k+2
missing), and the values of the edges 4k+2,...,8k+1.

Subgraph 4. We take an o-valuation of A; with the missing value 3k. The
large values and the small values will be increased by 6k+3 to yield the values
8k+3,...,10k+3 (with 9%k +3 missing) and 6k+3,...,8k+2. The values of the edges
will be 1,...,4k.

Subgraph 5 consists of one 4-gon; its vertices will be labeled by the 4 missing
values from the first four subgraphs: 13k+4, 5k+2, 9k +3, k (in cyclic order), the
values of the edges will be 12k +4, 8k +3, 8k+2, 4k +1.

The reader will observe that one number has not been used between the
values of the second and third subgraphs. This number (4k+1) is the missing
value of the new o-valuation of A 4¢.41.

Example 1. A, has an o-valuation (0,8,1,6), (3,7.4,5) (values of the vertices are
given in cyclic order) with the missing value 2. It also has the a-valuation
(8,0,7,2), (5,1,4,3) with the missing value 6. From this, we can construct an o.-
valuation of Ag.

Subgraph 1: (0,36,1,34), (3,35,4,33)
Subgraph 2: (32,5.31,7), (29,6,28.8)
Subgraph 3: (10,27,11,25), (13,26,14,24)
Subgraph 4: (23,15,22,17), (20,16,19,18)
Subgraph 5: (2,30,12,21).

Missing value: 9

Another possible extension of a known a-valuation is given in

Theorem 2. Let k£ be a positive integer. If the graph A, has an o-valuation
then A s¢41 also has an o-valuation.
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The structure of the proof is the same as in Theorem 1. We decompose
Asiy into six subgraphs. Each of the first five subgraphs will consist of k 4-
gons, the sixth subgraph will be one 4-gon. For each of the subgraphs, we
describe the construction of the labels of the vertices; for subgraphs No. 1....,5
this valuation is based on an o-valuation of Ag.

The details are given in the following table:

Subgraph  Missing  Increase in Increase in Transformed

No. value large values  small values  missing value
1 k 16k+4 0 k
2 3k 14k +4 2k+1 17k +4
3 k 12k+3 4k+1 Sk+1
4 3k 10k+3 6k+2 13k+3
5 k 8k+2 8k+2 Ok+2
6 the values of the vertices are 17k+4, 9k +2, 13k+3, k

The missing value of A s, is Sk+1.

Example 2. Proceeding from the two o-valuations of A, given in Example 1,
we will construct an o-valuation of A ;:

Subgraph 1:  (0,44,142),  (343441)
Subgraph2:  (40,539,7),  (37.6.36.8)
Subgraph3:  (9,35,1033),  (12,34,13,32)
Subgraph4:  (31,14,30,16),  (28,15,27,17)
Subgraph 5:  (18,26,19,24),  (21,25,22,23)
Subgraph 6:  (38,20,29,2).

The missing value is 11.

Theorem 3. If A; has an a-valuation then A gz, has an o-valuation.

Proof. We will decompose A g;, into ten subgraphs. A valuation of each of the
first nine subgraphs will again be constructed from an a-valuation of A,. The
tenth subgraph will consist of two 4-gons; the values of their vertices will be
obtained from the missing values of the first nine subgraphs. The details are
given in the following table:
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Subgraph  Missing  Increase in Increase in Transformed

No. value large values  small values  missing value
1 k 32k+8 0 k

2 3k 30k+8 2k+1 33k+8
3 k 28k+7 4k+1 Sk+1
4 3k 26k +7 6k+2 29k +7
5 k 24k+6 8k+2 9k +2
6 3k 22k+6 10k+3 25k+6
7 k 20k +5 12k+3 13k+3
8 3k 18k+5 14k +4 21k+5
9 k 16k +4 16k+4 17k +4
10 consists of two 4-gons: (k, 33k+8, 5k+1, 25k +6)

and (13k+3, 29k +7, 17k +4, 21k +5).

Missing value of Agrqo: 9k+2.

Example 3. Proceeding from the a-valuations of A, given in Example 1 we
will construct an o-valuation of A .

Subgraph 1: (0,80,1,78), (3,79.4,77)
Subgraph 2: (76,5,75,7), (73,6,72.,8)
Subgraph 3: (9,71,10,69), (12,70,13,68)
Subgraph 4: (67,14,66,16), (64,15,63,17)
Subgraph 5: (18,62,19,60), (21,61,22,59)
Subgraph 6: (58,23,57,25),  (55,24,54,26)
Subgraph 7: (27,53,28,51), (30,52,31,50)
Subgraph 8: (49,32,48,34), (46,33,45,35)
Subgraph 9: (36,44,3742), (39,43,4041)
Subgraph 10: (2,74,11,56), (29,65,38,47)
Missing value:  20.

Remark. The reader may observe that the valuation of the 10th subgraph in
Aogrss is also derived from an a-valuation of A,. If we subtract k from the value
of each vertex in subgraph 10 and then, in the resulting valuation, divide the
value of each vertex by 4k+1, we will obtain one of the a-valuations of A,. A
similar remark could be made about subgraph 6 in the construction of an o-
valuation of Asz,1: The valuation of subgraph 6 in As;.; is derived from an o-
valuation of A;.

At this moment, it would be tempting to try to prove the theorem stating
that if A, has an o-valuation, so does A13¢+3. This theorem might be true but it
cannot be proved by the method used in the proofs of Theorems 2 and 3; the
reason is that the last subgraph would consist of three 4-gons and their valuation
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would have to be constructed from an a-valuation of A3 -- but A3 does not have
an o-valuation. However, our method can be used to prove that the existence of
an a-valuation of A; implies the existence of an a-valuation of A 17;.4, and, we
are convinced that it can be extended to prove the following

Conjecture. If A,, A, have a-valuations then A 454,45 also has an o-valuation.

The above results, together with the fact that A, has an o-valuation for
1<k<10, k#3, and with the results obtained in [4] (where it is shown that, for
every n21,A,,and A ,,, have o-valuations) show that the set of all £ for which
Ay has an a-valuation is fairly dense.
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