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Let G be a finite group. A subset S of G is called a Cayley subset if S £
and 1 ¢ S. Given G and a Cayley subset S of G, we define the Cayley digraph
X = X(G, 8) of G with respect to S by

V(X) =G,
E(X) = {(a,b)]e,b€G, ba™" € 8}.

Given a Cayley subset S of G and an & € Aut G, clearly « induces a graph
isomorphism from X (G, S*) onto X (G, S). Conversly, a Cayley subset S of G
is called a“Cayley Isomorphism” subset if for any graph isomorphism X ( a8 =
X(G, S") of Cayley digraphs there exists an o € Aut G such that S*=g'.

Let m be a positive integer. We call G an m-DCI group if every Cayley
subset S with |S| < m is a “Cayley Isomorphism” subset, and we call G a DCI-
group if it is m-DCI for all m < |G- '

A. Addm [1] conjectured that the cyclic group Zn of order n is a DCI-group.
Elspas and Turner [2] disproved this conjecture by showing that Zg is not 3-DCI.
Recently, the author [3] determined all finite abelian 2-DCI groups, and Min-Yao
Xu and the anthor [4] obtained necessary and sufficient conditions under which
an abelian group of odd order is 3-DCI. Our main results are stated below.

Theorem A. ([3]).
a) A finite abelian group G is 1-DCI if and only if every Sylow sub-
group of G is homocyclic;

b.) A finite abelian group G is 2-DCI if and only if G is 1-DCI and
the Sylow 2-subgroup of G is cyclic or elementary abelian.

Theorem B. ([4]). An abelian group of odd order is 3-DCI if and only if ev-
ery Sylow subgroup of G is homocyclic and the Sylow 3-subgroup is cyclic or
elementary abelian. ‘

The purpose of this paper is to prove the following.

Theorem. Let G be an abelian group of even order, G = H x T, where H is
the Sylow 2-subgroup of G. Then G is 3-DCI if and only if T is 3-DCIand H
is cyclic of order 4 or elementary abelian.

A finite group G called homogenous if for any isomorphic subgroups H and
K of G and any group isomorphism o : H — K, o can be extended to an
automorphism of G.
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Lemma. ([3]). A finite abelian group is homogenous if and only if e very Sylow
subgroup of G is homocyclic, that is G is 1-DCI,

Proof of the theorem: Suppose first that G is an even order abelian 3-DCI group.
Then G must be 2-DCI according to the definition of m-DCI. Hence every Sylow
subgroup of G is homocyclic and the Sylow 2-subgroup H is cyclic or elementary.
Thus T is 3-DCI by Theorem B. Since Zg is not 3-DCI, H must be cyclic of order
4 or elementary abelian.

Conversely suppose that G = H x T with H cyclic of order 4 or elementary
abelian and T an odd order abelian 3-DCI group. Then G is 2-DCI by Theorem
A . Thus it is sufficient to prove that an arbitrary Cayley 3-subset S = {a,b,c} of
G is a “Cayley isomorphism” subset. Suppose that §' = {a’,¥, ¢’} is a Cayley
3-subset such that X(G,S) ¥ X(G,S'). We shall show that there exists an
a € Aut G such that S* = §'.

For convenience, we use the following notation. For a Cayley digraph X =
X(G, S),anelement z € G and a positive integer i, we write

Xi(z) = {y € G| there is a directed walk of length i from z to y
inX(G,S)},

X_i(z) = {y € G| there is a directed Walk of length i from y to
inX(G,9)}.

Clearly, X1(z) = z8 = {za,zb,zc}, X_1(z) = {a 'z, b7 g, c! z} and
X2 (z) = 28 = {za?,zb?, xc?, zab, zac, Thc}. Assume that o is a graph ismor-
phism from X (G, S) onto X (@, 8'). Since Cayley digraphs are vertex-transitive,
without loss of generality, we may assume that 1° = 1. Hence S® = S’ and we
may assume that

a®=ad, =V <=¢.
Because a, b and c are distinct so are ab, ac and be. Thus we get 3 <|X2(1)|<6.
When |X>(1)] = 3 and 6, the same argument as in [4] will give the desired
result. So we need only treat |X,(1)| = 4 and 5. We shall consider the two
cases separately.
Case 1: X;(1) = 4. Without loss of generality we may assume X,(1) =
{ab,ac,bc,a’}, where a® = b = 2 ora? = B2, & = ab. Observe that
a> = b = ¢* implies H elementary abelian, and that a2 = b2, 2 = ab im-
plies that H = Z4. Then conclude that S and S’ must satisfy the same types
of equations since X, (1) = 4 for S'. It is trivial to show that there exists an
a € Aut G such that S* = §' when a® = b? = ¢2. If a® = b? and ¢? = ab, may
suppose H = (z) and |z| = 4. In this case, S and S’ are one of (a), (b), (¢) and
(a'), (¥'), () respectively.
(a) {u,uz,uz?}, (b) {u, uz, uzr’}, (o) {uz, uz?, uz®},

(o) {u',u'y,u'y?}, (V) {u',u'y,u's’}, () {u'y,u's?,u'y?},
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where u,u' € T and (z) = (y).

Since |(S)| [(S")], we get |u| = |u']. By 1-DCIof G and Aut G & (Aut H) x
(Aut T), there exists an o € Aut G such that u'* = u, y* = z. So may assume
that S and S’ are one of (a), (b), and (c) respectively. Now we need only to show
that o is not a graph isomorphism from X (G, S) onto X(G,S") if S # §'. We
shall show this. We give full details of the argument for the case

S = {u,uz,uz’}. 8§ = {u,uz,uz®} )

First, let T; = {u*, u'z, w'z?, u’z>}, 1 is a non-negative integer and |u| = m is
odd. From 17 =1,8° = S' it follows that X_;(S) = X_1(8'), thatis T§ = Tp.
Then by induction on 7, we obtain 77 = T3, = 0,1,2 .... Now we shall show
that

(uz’)* - (uz?)*, *

for any positive integer k.

Again we do this by induction on k. Whenk = 1, from7y =T; and §° = &,
we get (uz?)? = uz?. Assume (*)is true for k and consider Ic+ 1. Suppose k = r
(mod 4),r € {0,1,2,3}. If r = 0, then (uz’)* = u* and (uz?)* = uk. The
inductive hypothesis (uz3)* —° (uz?)* will give X; (u*)® = X}(u¥). Since
TE,, = Tke1, We get (ub*123)9 = uk*122 | thatis (uz®) ¥ 5 (uz?)**1. We
can repeat what we did in » = 0 to show that (*) holds forr = 1,2,3 (mod 4).

On other hand, |uz®| = 4m and |uz?| = 2m. From (¥), we get (uz>)?™
(uz?)2™ = 1. This contradicts 1° = 1. Thus (1) does not happen. Similarly, we
can show (2), (3) do not happen, when

S= {u,uz,uzz}, S = {uz,uzz,uzs}, ?)
S = {u,uz,uz’}, S ={uz,uz? uz’}. 3)

So the theorem holds for | X2 (1)| = 4

Case 2: |X(1)] = 5. Without loss of the generality may assume X3(1) =
{ab,ac,bc,b*,c*}, and a® = b* or a? = bc. We shall treat the two cases sepa-
rately.
(A): X2(1) = {ab,ac, bc,a? = b?,c?}.

In this case, we have the following facts:
1. X5(1) = {a'V,ad'd,b'c,a? = b?,c?} in X(G, S'}.

Because X;(a) N X;(b) = {a® = b?,ab} and a® = o, b° = b'. It follows that
[X1(a") N X1 (V)| =2 in X(G,S"). Hence a? = b2 ora = b'd orb? = a'c’.
Obviously, X1(a) NX1(b)NX1(c) # @ in X(G,8) ifa? = b'c orb? = d'c.
But X (a)NX;1(b)NX;(c) = ® in X(G,S) and (X;(a) N X, (b)NX1(c))° =
X1(a") N X1(b) N X1(c). Thus we have a’? = b2,
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2. The graph isomorphism ¢ satisfies equations (**) below
(ack)a = alclk, (bck)cr = b’C’k, (ck+l)a = C/Ic+l, (**)

fork=0,1,2,---,|c| - 1.

Again by induction on k. (**) holds when k& = 0 since S° = §' and a° =
a',b° =V, c® = ¢. Assume (**) holds for k — 1 and consider k. We obtain
Xi1(ack1)? = X, (a'c*1) and X, (bcF-1)° = X (b 1) by the inductive
hypothesis . Hence X;(ack~1)? N X;(bcF-1)? = X, (a'd*1) N X (b *1).
Because Xi(act~!) — X;(bck!) = {ac*} and X;(a'c*1) — X (b k1) =
{a'c*}, it follows that (ack)? = a'c*. For the same reason, (bc¥)® = b'c*.
Finally, from the inductive hypothesis (c¥)? = ¢¥, we get X1(c*)° = X;1(c%),
that is {ac*, bc*,c**1}° = {a'c*,b'c*,c**'}. Thus (cF*1)? = o*+!,

3. ([3]). Let G be an abelian 2-DCI group. {a,b} and {a’, '} are two Cayley
2-subset. o is a group isomorphism from X (G, {a,b}) onto X(G, {da',b'})
and 12 = 1, 0% = o', b° = b'. Then o satisfies

(aibj)cr = an'blj

where 1, j are non-negative integers.
Now we shall complete the proof of (A). First of all, we show that

(zc)? = z°¢° = 1°¢, (*¥¥%)
for arbitrary z € (S).

Because (S) = (a,b,c) and a> = b?, we may assume that z = ab/c* or
i+1 k . ~ . .
**c*, where j, k are non-negative integers. In fact, we need only prove

{abfc", bi+lck}a = {albljc/k’ blj+lcllc}' (***l)

we do this by inductive induction on j. (***') holds by 2. when k = 0. Assume
j > 0. By the inductive hypothesis, we obtain

[X1(ab k) N X1 (V*1e9)1° = X1 (a'b7d*) N X (874 %),
that is
{abj+lclc bj+2 ck}u = {alb/j+lclk b/j+2 clk}‘

Hence (***) holds.

Then, (***) implies that the restriction of o to (S) is a graph isomorphism
from X ((S), {a,b}) onto X((S'),{a’,'}). Furthermore, o is a graph isomor-
phism from X (G, {a,b}) onto X(G,{a’b'}). Now 3. tells us that o satisfies
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(a'¥)° = a"b’ for arbitrary non-negative integers 1, j. Combining this with
(***), find that
(at’bick)cr = au'bljclk, (****)

for all 1, j, k non-negative integers.

Finally, by (***¥), it follows that the restriction of o to (S) is a group isomor-
phism from {S) onto (S’). From lemma, o|(sy can be extended to an a € Aut G,
such as) = o|(s). Thus we have shown S* = §'.

(B): X2(1) = {ab,ac,bc = a?,1?,}.

The same statement as in the proof of [4] for [ X, (1)| = 5 will give the proof

of (B).

This compleles the proof of the sufficiency of the theorem.

Acknowledgements.

The author wishes to express his sincere appreciation to Professor C. E. Pracger
and Professor Ming-yao Xu for their helpful directions.

References

1. A. Addm, Research problem 210, J. combin. Theory 2 (1967), p. 393.

2. B. Elspas and J. Tumer, Graphs with circulant adjacency Matrices, J. Com-
bin. Theory 9 (1970), 297-307.

3. Xin-Gui Fang, A characterization of abelian 2-DCI groups, J. Math (PRC),
Vol. 8 (1988), 315-317.

4. Xin-Gui Fang and Ming-Yao Xu, Abelian 3-DCI groups of odd order, Ats
Combinatoria 28 (1989), 247-251.

267



